Skip to main content

Smart drugs: green shuttle or real drug?

Abstract

We have combined morphological, molecular, and chemical techniques in order to identify the plant and chemical composition of some last-generation smart drugs, present on the market under the following names: Jungle Mistic Incense, B-52, Blendz, and Kratom 10x. Micromorphological analyses of botanical fragments allowed identification of epidermal cells, stomata, trichomes, starch, crystals, and pollen. DNA barcoding was carried out by the plastidial gene rbcL and the spacer trnH-psbA as universal markers. The combination of morphological and molecular data revealed a mixture of plants from different families, including aromatic species, viz., Lamiaceae and Turneraceae. GC-MS and LC-MS analyses on ethanol or methanol extracts showed the presence of synthetic cannabinoids, including JWH-250 in Jungle, JWH-122 in B-52, and JWH-073 and JWH-018 in Blendz. In Kratom 10x, only the indole alkaloid mitragynine was detected. All the identified synthetic cannabinoids, apart from mitragynine, are under the restriction of law in Italy (TU 309/90). Synthetic cannabinoid crystals were also identified by scanning electron microscopy and energy dispersive X-ray spectroscopy, which also detected other foreign organic chemicals, probably preservatives or antimycotics. In Kratom only leaf fragments from Mitragyna speciosa, containing the alkaloid mitragynine, were found. In the remaining products, aromatic plant species have mainly the role of hiding synthetic cannabinoids, thus acting as a “green shuttle” rather than as real drugs. Such a multidisciplinary approach is proposed as a method for the identification of herbal blends of uncertain composition, which are widely marketed in “headshops” and on the Internet, and represent a serious hazard to public health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lindigkeit R, Boehme A, Eiserloh I, Luebbecke M, Wiggermann M, Ernst L, Beuerle T (2009) Spice: a never ending story? Forensic Sci Int 191:58–63

    PubMed  CAS  Google Scholar 

  2. Schmidt MM, Sharma A, Schifano F, Feinmann C (2011) “Legal highs” on the net—evaluation of UK-based websites, products and product information. Forensic Sci Int 206:92–97

    PubMed  Google Scholar 

  3. Atwood BK, Lee D, Straiker A, Widlanski TS, Mackie K (2011) CP47,497-C8 and JWH073, commonly found in ‘Spice’ herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists. Eur J Pharmacol 659:139–45

    PubMed  CAS  Google Scholar 

  4. Dresen S, Ferreirós N, Pütz M, Westphal F, Zimmermann R, Auwärter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–94

    PubMed  CAS  Google Scholar 

  5. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837

    PubMed  Google Scholar 

  6. Vardakou I, Pistos C, Spiliopoulou C (2010) Spice drugs as a new trend: mode of action, identification and legislation. Toxicol Lett 197:157–162

    PubMed  CAS  Google Scholar 

  7. www.barcoding.si.edu. Accessed 22 Jun 2012

  8. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    CAS  Google Scholar 

  9. Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-question tour to improve users' awareness about the method. Brief Bioinform 11:440–453

    PubMed  CAS  Google Scholar 

  10. Fay MF, Bayer C, Alverson WS, de Bruijn AY, Chase MW (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 47:43–50

    Google Scholar 

  11. Newmaster SG, Ragupathy S (2009) Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour 9:172–180

    CAS  Google Scholar 

  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    PubMed  CAS  Google Scholar 

  13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  14. BOLD Identification System (IDS) http://www.boldsystems.org/index.php/IDS_OpenIdEngine. Accessed 12 Oct 2012

  15. Jackson BP, Snowdon DW (1990) Atlas of microscopy of medicinal plants, culinary herbs and spices. CRC, Boca Raton

    Google Scholar 

  16. Rahfeld B (2011) Mikroskopischer farbatlas pflanzlicher drogen. Spektrum Akademischer Verlag, Plankstadt

    Google Scholar 

  17. Tschirch A, Oesterle O (1900) Anatomischer atlas der pharmakognosie und nahrungsmittelkunde. Leipzig Chr. Herm. Tauchnitz, Bern, Schweiz

    Google Scholar 

  18. Schneider A (1902) Powdered vegetable drugs. Calumet, Pittsburgh

    Google Scholar 

  19. Kumar S, Taneja R, Sharma A (2006) Pharmacognostic standardization of Turnera aphrodisiaca Ward. J Med Food 9:254–260

    PubMed  CAS  Google Scholar 

  20. Buchner R, Weber M (2000 onwards) Descriptions, illustrations, identifications, and information retrieval. PalDat-a palinologicaldatabase: http://www.paldat.org/. Accessed 12 Oct 2012

  21. Erdtman G (1952) Pollen morphology and plant taxonomy I. Almqvist & Wiksell, Stockholm

    Google Scholar 

  22. Faegri K, Iversen J (1975) Textbook of pollen analysis. Hafner, New York

    Google Scholar 

  23. Punt W et al. (1976–2003) The Northwest European pollen flora (NEPF). Vols 1–8. Elsevier, Amsterdam

  24. Lersten NR, Horner HT (2011) Unique calcium oxalate “duplex” and “concretion” idioblasts in leaves of tribe Naucleeae (Rubiaceae). Am J Bot 98:1–11

    PubMed  Google Scholar 

  25. Jensen WA (1962) Botanical histochemistry. Freeman, San Francisco

    Google Scholar 

  26. Martin PS, Drew CM (1969) Scanning electron photomicrographs of southwestern pollen grains. J Ariz-Nev Acad Sci 5:147–176

    Google Scholar 

  27. Martin PS, Drew CM (1970) Additional scanning electron micrographs of southwestern pollen grains. J Ariz-Nev Acad Sci 6:140–161

    Google Scholar 

  28. Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces—horses for courses. Micron 39:1049–1061

    PubMed  CAS  Google Scholar 

  29. Solomon AM, King JE, Martin PS, Thomas J (1973) Further scanning electron photomicrographs of southwestern pollen grains. J Ariz-Nev Acad Sci 8:135–157

    Google Scholar 

  30. Zafar M, Khan MA, Ahmad M, Sultana S, Qureshi R, Tareen RB (2010) Authentication of misidentified crude herbal drugs marketed in Pakistan. Journal of Medicinal Plants Research 4:1584–1593 Available online at http://www.academicjournals.org/JMPR ISSN 1996–0875

    Google Scholar 

  31. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2011) Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products. Forensic Toxicol 29:25–37

    CAS  Google Scholar 

  32. Department for Antidrug Policies (DPA) National early warning system (N.E.W.S.). www.allertadroga.it/sapd/login/. Accessed 20 Dec 2012

  33. Scientific Working Group for the Analysis of Seized Drugs. http://www.swgdrug.org/ms.htm. Accessed 20 Dec 2012

  34. Walker MD, Ahmad SJ (1970) The Mitragyna species of Asia. XVII. The anatomy of the leaves of Mitragyna javanica var. microphylla. Planta Medica 18:55–65

    Google Scholar 

  35. Razafimandimbison SG, Bremer B (2002) Phylogeny and classification of Naucleeae s.l. (Rubiaceae) inferred from molecular (ITS, rbcL, and trnT-F) and morphological data. Am J Bot 89:1027–1041

    PubMed  CAS  Google Scholar 

  36. Kennedy PD, Collin W (2010) Automated ion trap screening method for the detection of synthetic cannabinoids in commercial herbal incense products. Synthetic cannabinoid screening. https://www.caymanchem.com/app/screen/Static/restrict/public/path/sampleApplications,CaymanChemicalSyntheticCannabinoidScreening.pdf/filename/CaymanChemicalSyntheticCannabinoidScreening.pdf. Accessed 22 June 2012

  37. Decreto del Presidente della Repubblica 9 ottobre 1990, n. 309 GU n. 62 del 15-3-2006 - Suppl Ordinario n.62

  38. United Nations Office on Drugs and Crime (UNODC) (2009) Recommended methods for the identification and analysis of cannabis and cannabis products. United Nations New York. http://www.unodc.org/documents/scientific/ST-NAR-40-Ebook.pdf. Accessed 26 Jan 2012

  39. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66

    CAS  Google Scholar 

  40. Dargan PI, Hudson S, Ramsey J, Wood DM (2011) The impact of changes in UK classification of the synthetic cannabinoid receptor agonists in ‘Spice’. Int J Drug Policy 22:274–277

    PubMed  Google Scholar 

  41. Gottardo R, Chiarini A, Dal Prà I, Seri C, Rimondo C, Serpelloni G, Armato U, Tagliaro F (2012) Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS. J Mass Spectrom 47:141–146

    PubMed  CAS  Google Scholar 

  42. Uchiyama N, Kikura-Hanajiri R, Ogata J, Goda Y (2010) Chemical analysis of synthetic cannabinoids as designer drugs in herbal products. Forensic Sci Int 198:31–38

    PubMed  CAS  Google Scholar 

  43. Kumar S, Taneja R, Sharma A (2005) The genus Turnera: a review update. Pharm Biol 43:383–391

    Google Scholar 

  44. Ministero della Salute. D.L. 16/6/2010 http://www.politicheantidroga.it/media/336190/d.m._16_giugno_2010.pdf. Accessed 20 Jun 2011

  45. Ministero della Salute. D.L. 11/5/2011 http://www.politicheantidroga.it/media/446920/d.m%2011%20maggio%2011.pdf. Accessed 8 Jul 2011

  46. Schultes RE, Hofmann A, Rätsch C (2001) Plants of the gods. Healing Arts Press, Rochester, Vermont

    Google Scholar 

  47. De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Rev Int 44:693–702

    Google Scholar 

  48. De Mattia F, Gentili R, Bruni I, Galimberti A, Sgorbati S, Casiraghi M, Labra M (2012) A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Bot J Linn Soc 169:518–529

    Google Scholar 

  49. Serrano R, da Silva G, Silva O (2010) Application of light and scanning electron microscopy in the identification of herbal medicines. In Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. ©FORMATEX 2010, Badajoz, Spain, pp.182–190

Download references

Acknowledgments

We are very grateful to Laura Negretti (DISTAV Università di Genova) for the technical assistance in SEM–EDS analyses, and to Neil Campbell (Università di Milano-Bicocca) for language revision. We also thank Riccardo Albericci, Curator of the Botanical Garden Clelia Durazzo Grimaldi of Genoa, Italy, and the firm A. Minardi & Figli s.r.l. (Bagnocavallo, Ravenna, Italy) for providing plant samples and herbal blends used for comparison. This research was partially supported by Fondazione Carige, Genoa, Italy (nr. 2013.0132-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Cornara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cornara, L., Borghesi, B., Canali, C. et al. Smart drugs: green shuttle or real drug?. Int J Legal Med 127, 1109–1123 (2013). https://doi.org/10.1007/s00414-013-0893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-013-0893-9

Keywords

  • Smart drugs
  • Cannabinoids
  • DNA barcoding
  • Micromorphology
  • GC-MS analysis
  • SEM-EDS