Skip to main content
Log in

A histomorphological analysis of human and non-human femora

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Histology is used to describe post-mortem bone alterations, trauma, pathology and age estimation and to separate human and non-human bones. Many scholars are however not familiar with the intricate and variable microstructure of bone, and due to the complex nature of some classification systems, bone histomorphology is often incorrectly described or identified. Little information is available on the histomorphology of non-human bones found in southern Africa, and therefore, the aim of this study was to describe the histomorphology of non-human species commonly found in southern Africa, namely, impala and monkeys, along with cat, dog, cow, sheep, equid and pig. Human femora were included for comparative purposes. The periosteal surface of femora was described and focussed only on the arrangements of vascular canals, primary osteons and secondary osteons. The results compared favourably to other studies and also added a histomorphological description of impala femora which consisted of primary vascular longitudinal bone tissue. A large degree of overlap and combinations of bone tissue types was observed, as well as evidence which allows animals from similar taxonomic orders to be grouped together. Primary vascular bone was primarily observed in artiodactyls (cow, pig, sheep and impala), while Haversian bone was recognised in carnivores (cat and dog), Perissodactyla (horses and donkeys) and primates. These differences can be used to exclude human from unknown bone fragments and also serve to caution investigators when using animal models to infer human bone tissue responses to thermal damage, ballistic trauma, etc., as bone tissue types different to that of human bone may respond differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law 21:243–267

    CAS  PubMed  Google Scholar 

  2. Jans MME, Nielsen-Marsh CM, Smith CI, Collins MJ, Kars H (2004) Characterisation of microbial attack on archaeological bone. J Archaeol Science 31:87–95

    Article  Google Scholar 

  3. Hollund HI, Jans MME, Collins MJ, Kars H, Joosten I, Kars SM (2011) What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from castricum. The Netherlands Int J Osteoarchaeol. doi:10.1002/oa.1273

    Google Scholar 

  4. Bell LS (2012) Histotaphonomy. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton, pp 241–251

    Google Scholar 

  5. Boyde A, Hendei P, Hende R, Maconnachie PE, Jones SJ (1990) Human cranial bone structure and the healing of cranial bone grafts: a study using backscattered electron imaging and confocal microscopy. Anat Embryology 181:235–251. doi:10.1007/BF00174618

    CAS  Google Scholar 

  6. De Boer HH, Aarents MJ, Maat GJR (2010) Staining ground sections of natural dry bone tissue for microscopy. Int J Osteoarchaeol. doi:10.1002/oa.1208

    Google Scholar 

  7. Bartelink EJ, Wiersema JM, Demaree RS (2001) Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology. J Forensic Sci 46:1288–1293

    CAS  PubMed  Google Scholar 

  8. Agnew AM, Bolte JH IV (2012) Bone fracture: biomechanics and risk. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton, pp 221–240

    Google Scholar 

  9. Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthropol 23:149–163. doi:10.1002/ajpa.1330230215

    Article  CAS  PubMed  Google Scholar 

  10. Keough N, L’Abbé EN, Steyn M (2009) The evaluation of age-related histomorphometric variables in a cadaver sample of lower socioeconomic status: implications for estimating age at death. Forensic Sci Int 191:114.e1–114.e6. doi:10.1016/j.forsciint.2009.07.012

  11. Streeter M (2012) Histological age-ate-death estimation. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton, pp 135–152

    Google Scholar 

  12. Ortner DJ (2003) Identification of pathological conditions in human skeletal remains, 2nd edn. Academic, Amsterdam

    Google Scholar 

  13. Maat GJR (2004) Scurvy in adults and youngsters: the Dutch experience. A review of the history and pathology of a disregarded disease. Int J Osteoarchaeol 14:77–81. doi:10.1002/oa.708

    Article  Google Scholar 

  14. Schultz M (2001) Paleohistopathology of bone: a new approach to the study of ancient diseases. Yrbk Phys Anthropol 44:106–108. doi:10.1002/ajpa.10024

    Article  Google Scholar 

  15. Schultz M (2003) Light microscopic analysis in skeletal paleopathology. In: Ortner D (ed) Identification of pathological conditions in human skeletal remains, 2nd edn. Academic, Amsterdam

    Google Scholar 

  16. Schultz M, Parzinger H, Posdnjakov DV, Chikisheva TA, Schmidt-Schultz TH (2007) Oldest known case of metastasizing prostate carcinoma diagnosed in the skeleton of a 2,700-year-old Scythian King from Arzhan (Siberia, Russia). Int J Cancer 121:2591–2595. doi:10.1002/ijc.23073

    Article  CAS  PubMed  Google Scholar 

  17. Schultz M (2012) Light microscopic analysis of macerated pathologically changed bone. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton, pp 253–296

    Google Scholar 

  18. Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analyses for species identification. J Forensic Sci 51:1235–1239. doi:10.1111/j.1556-4029.2006.00260.x

    Article  PubMed  Google Scholar 

  19. Martiniaková M, Grosskopf B, Vondráková M, Omelka R, Fabĭs M (2006) Differences in femoral compact bone tissue microscopic structure between adult cows (Bos taurus) and pigs (Sus scrofa domestics). Anat Histol Embryol 35:167–170. doi:10.1111/j.1439-0264.2005.00652.x

    Article  PubMed  Google Scholar 

  20. Cuijpers AGFM (2006) Histological identification of bone fragments in archaeology: telling humans apart from horses and cattle. Int J Osteoarchaeol 16:465–480. doi:10.1002/oa.848

    Article  Google Scholar 

  21. Martiniaková M, Grosskopf B, Omelka R, Vondráková M, Bauerová M (2007) Histological analysis of ovine compact bone tissue. J Vet Med Sci 69:409–411. doi:10.1292/jvms.69.409

    Article  PubMed  Google Scholar 

  22. Martiniaková M, Grosskopf B, Omelka R, Dammers K, Vondráková M, Bauerová M (2007) Histological study of compact bone tissue in some mammals: a method for species determination. Int J Osteoarchaeol 17:82–90. doi:10.1002/oa.856

    Article  Google Scholar 

  23. Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52:249–263. doi:10.1111/j.1556-4029.2006.00368.x

    Article  PubMed  Google Scholar 

  24. Cattaneo C, Porta D, Gibelli D, Gamba C (2009) Histological determination of the human origin of bone fragments. J Forensic Sci 54:531–533. doi:10.1111/j.1556-4029.2009.01000.x

    Article  PubMed  Google Scholar 

  25. Enlow DH, Brown SO (1958) A comparative histological study of fossil and recent bone tissue, part III. Tex J Sci 10:187–230

    Google Scholar 

  26. Enlow DH (1966) An evaluation of the use of bone histology in forensic medicine and anthropology. In: Evans FG (ed) Studies on the anatomy and function of bone and joints. Springer, Heidelberg, pp 93–112

    Chapter  Google Scholar 

  27. Enlow DH, Brown SO (1956) A comparative histological study of fossil and recent bone tissues, part I. Tex J Sci 7:405–443

    Google Scholar 

  28. Enlow DH, Brown SO (1957) A comparative histological study of fossil and recent bone tissues, part II. Tex J Sci 9:186–214

    Google Scholar 

  29. Locke M, Dean RL (2003) Vascular spaces in compact bone: a technique to correct a common misinterpretation of structure. Am Biol Teach 65:701–707

    Google Scholar 

  30. Mulhern DM, Ubelaker DH (2003) Histological examination of bone development in juvenile chimpanzees. Am J Phys Anthropol 122:127–133. doi:10.1002/ajpa.10294

    Article  PubMed  Google Scholar 

  31. Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier FJ, Sire J, Zylberberg L, de Ricqlès A (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York, pp 471–530

    Google Scholar 

  32. Greenle DM, Dunnell RC (2010) Identification of fragmentary bone from the Pacific. J Archaeol Sci 37:957–970

    Article  Google Scholar 

  33. Locke M (2004) Structure of long bones in mammals. J Morphol 262:546–565. doi:10.1002/jmor.10282

    Article  PubMed  Google Scholar 

  34. Skinner JD, Chimimba CT (2005) The Mammals of the Southern African, 3rd edn. Cambridge University Press, Cape Town

    Book  Google Scholar 

  35. Steyn M, Henneberg M (1996) Skeletal growth of children from the Iron Age site at K2 (South Africa). Am J Phys Anthropol 100:389–396

    Article  CAS  PubMed  Google Scholar 

  36. Maat GJR, Van den Bos RPM, Aarents MJ (2001) Manual preparation of ground sections for the microscopy of natural bone tissue: update and modification of Frost’s ‘rapid manual method’. Int J Osteoarchaeol 11:366–374. doi:10.1002/oa.578

    Article  Google Scholar 

  37. Mulhern DM, Ubelaker DH (2001) Differences in osteon banding between human and nonhuman bone. J Forensic Sci 46:220–222

    CAS  PubMed  Google Scholar 

  38. Crescimanno A, Stout SD (2011) Differentiating fragmented human and nonhuman long bone using osteon circularity. J Forensic Sci. doi:10.1111/j.1556-4029.2011.01973.x

    PubMed  Google Scholar 

  39. Zedda M, Lepore G, Manca P, Chisu V, Farina V (2008) Comparative bone histology of adult horses (Equus caballus) and cows (Bos taurus). Anat Histol Embryol 37:442–445. doi:10.1111/j.1439-0264.2008.00878.x

    Article  CAS  PubMed  Google Scholar 

  40. Mulhern DM, Ubelaker DH (2012) Differentiating human from nonhuman bone microstructure. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton, pp 109–134

    Google Scholar 

  41. Norman JE, Ashley MV (2000) Phylogenetics of Perissodactyla and tests of the molecular clock. J Mol Evol 50:11–21. doi:10.1007/s002399910002

    CAS  PubMed  Google Scholar 

  42. Cuijpers S, Lauwerier RCGM (2008) Differentiating between bone fragments from horses and cattle: a histological identification method for archaeology. Environ Archaeol 13:165–179. doi:10.1179/174963108X343281

    Article  Google Scholar 

  43. Mulhern DM, Ubelaker DH (2009) Bone microstructure in juvenile chimpanzees. Am J Phys Anthropol 140:368–375. doi:10.1002/ajpa.20959

    Article  PubMed  Google Scholar 

  44. Burr DB (1992) Estimated intracortical bone turnover in the femur of growing macaques: Implications for their use as models in skeletal pathology. Anat Rec 232:180–189. doi:10.1002/ar.1092320203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Anatomy (University of Pretoria) for permission to sample skeletal remains as well as Mr De Villiers from the Faculty of Veterinary Sciences (University of Pretoria) for the donation and maceration of non-human remains. We wish to acknowledge the efforts of Mr Botha, Mr Van der Merwe and Mr Hall from the Microanalysis Laboratory (University of Pretoria), Mr Marakalla from the Department of Anatomy (University of Pretoria) and also Mr du Plessis (University of the Witwatersrand) for their assistance. This research was supported by NAVKOM as well as the National Research Foundation (NRF) of South Africa which supports the research conducted by M Steyn and EN L’Abbé. Any opinions, findings and conclusions or recommendations expressed in the material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desiré Brits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brits, D., Steyn, M. & L´Abbé, E.N. A histomorphological analysis of human and non-human femora. Int J Legal Med 128, 369–377 (2014). https://doi.org/10.1007/s00414-013-0854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-013-0854-3

Keywords

Navigation