International Journal of Legal Medicine

, Volume 127, Issue 3, pp 587–590 | Cite as

Assessment of application value of 19 autosomal short tandem repeat loci of GoldenEyeTM 20A kit in forensic paternity testing

  • Yan-Mei HuangEmail author
  • Jie Wang
  • Zhangping Jiao
  • Liu Yang
  • Xinning Zhang
  • Hui Tang
  • Yacheng Liu
Technical Note


This study was carried out to assess the application value of 19 autosomal short tandem repeat (STR) loci of GoldenEyeTM 20A kit, in which 13 combined DNA index system core STR loci and PentaE, PentaD, D2S1338, D19S433, D12S391, and D6S1043 of six STR loci could be used in forensic paternity testing in Chinese population. We amplified the genomic DNA from blood samples on FTA paper of 289 paternity testing cases by using the GoldenEyeTM 20A kit. The amplified products were detected by capillary electrophoresis, and then the genotypes of 20 genetic markers including 19 STR loci as well as Amelogenin for sex determination were analyzed by GeneMapper v3.2 and GeneMarker HID Software. The results of genotypes were compared to the three commonly used commercial kits including AmpFℓSTR IdentifilerTM, PowerPlexTM16, and AmpFℓSTR SinofilerTM kits. Compared to the three other common commercial kits, the GoldenEyeTM 20A kit had higher value of combined paternity index in certainty of paternity or non-exclusion paternity cases, and more numbers of STR loci were excluded in exclusionary paternity cases. Our data in this study showed that the GoldenEyeTM 20A kit has a higher application value in forensic paternity testing and will be of help for kinship analysis.


Forensic genetics GoldenEyeTM 20A kit Short tandem repeat (STR) Paternity testing Assessment 



This study was supported by a grant from the Foundation for the Peoples with Highly Education, Xinxiang Medical University (no. 2005). We would like to express our acknowledgment to adjunct associate professor Wancai Yang, Department of Pathology, University of Illinois at Chicago, for improving the English presentation.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

414_2013_842_MOESM1_ESM.doc (86 kb)
ESM 1 (DOC 86 kb)


  1. 1.
    Westen AA, Haned H, Grol LJ, Harteveld J, van der Gaag KJ, de Knijff P, Sijen T (2012) Combining results of forensic STR kits: HDplex validation including allelic association and linkage testing with NGM and Identifiler loci. Int J Legal Med 126(5):781–9. doi: 10.1007/s00414-012-0724-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Collins PJ, Hennessy LK, Leibelt CS, Roby RK, Reeder DJ, Foxall PA (2004) Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and amelogenin: the AmpFlSTR Identifiler PCR Amplification Kit. J Forensic Sci 49(6):1265–1277PubMedCrossRefGoogle Scholar
  3. 3.
    Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47(4):773–785PubMedGoogle Scholar
  4. 4.
    Li L, Ge J, Zhang S, Guo J, Zhao S, Li C, Tang H, Davis C, Budowle B, Hou Y, Liu Y (2012) Maternity exclusion with a very high autosomal STRs kinship index. Int J Legal Med 126(4):645–648PubMedCrossRefGoogle Scholar
  5. 5.
    Nothnagel M, Schmidtke J, Krawczak M (2010) Potentials and limits of pairwise kinship analysis using autosomal short tandem repeat loci. Int J Legal Med 124(3):205–215PubMedCrossRefGoogle Scholar
  6. 6.
    Phillips C, Fondevila M, Garcia-Magarinos M, Rodriguez A, Salas A, Carracedo A, Lareu MV (2008) Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers. Forensic Sci Int Genet 2(3):198–204PubMedCrossRefGoogle Scholar
  7. 7.
    Wang J, Huang YM, Zhang QX, Wang J, Tang H, Jiao ZP, Liu YC (2012) The developmental validation of the homemade GoldeneyeTM20A PCR amplification kit. Chin J Forensic Med 27(1):12–15Google Scholar
  8. 8.
    Witt S, Neumann J, Zierdt H, Gebel G, Roscheisen C (2012) Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples. Forensic Sci Int Genet 6(5):539–47. doi: 10.1016/j.fsigen.2012.01.00 PubMedCrossRefGoogle Scholar
  9. 9.
    Hwa HL, Chang YY, Lee JC, Yin HY, Tseng LH, Su YN, Ko TM (2011) Fourteen non-CODIS autosomal short tandem repeat loci multiplex data from Taiwanese. Int J Legal Med 125(2):219–226PubMedCrossRefGoogle Scholar
  10. 10.
    Pu CE, Linacre A (2007) CPI distribution and cutoff values for duo kinship testing. Chin J Physiol 50(5):232–239PubMedGoogle Scholar
  11. 11.
    Bar W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr W, Olaisen B (1997) DNA recommendations. Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. International Society for Forensic Haemogenetics. Int J Legal Med 110(4):175–176PubMedCrossRefGoogle Scholar
  12. 12.
    Carracedo A, Butler JM, Gusmao L, Parson W, Roewer L, Schneider PM (2010) Publication of population data for forensic purposes. Forensic Sci Int Genet 4(3):145–147PubMedCrossRefGoogle Scholar
  13. 13.
    Butler JM (2007) Short tandem repeat typing technologies used in human identity testing. Biotechniques 43(4):ii–vPubMedCrossRefGoogle Scholar
  14. 14.
    Gjertson DW, Brenner CH, Baur MP, Carracedo A, Guidet F, Luque JA, Lessig R, Mayr WR, Pascali VL, Prinz M, Schneider PM, Morling N (2007) ISFG: recommendations on biostatistics in paternity testing. Forensic Sci Int Genet 1(3–4):223–231PubMedCrossRefGoogle Scholar
  15. 15.
    Morling N, Allen RW, Carracedo A, Geada H, Guidet F, Hallenberg C, Martin W, Mayr WR, Olaisen B, Pascali VL, Schneider PM (2002) Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases. Forensic Sci Int 129(3):148–157PubMedCrossRefGoogle Scholar
  16. 16.
    Wu XY, Yang QE, Liu YC, Lu HL, Li SB, Li L, Liu C, Wu WW, Sun HY, Zhu YL, Xu BY, Lu D (2010) Establishment of standard and conclusion expression of paternity testing. J Sun Yat-Sen University (Medical Sciences) 31(1):20–22,44Google Scholar
  17. 17.
    Zhu YL, Huang YM, Wu XY (2006) How to draw a conclusion in motherless parentage testing using short tandem repeats as genetic makers. Fa Yi Xue Za Zhi 22(4):281–284PubMedGoogle Scholar
  18. 18.
    Lu D, Liu Q, Wu W, Zhao H (2012) Mutation analysis of 24 short tandem repeats in Chinese Han population. Int J Legal Med 126(2):331–335PubMedCrossRefGoogle Scholar
  19. 19.
    Zidkova A, Horinek A, Kebrdlova V, Korabecna M (2011) Application of the new insertion-deletion polymorphism kit for forensic identification and parentage testing on the Czech population. Int J Legal Med 127(1):7–10. doi: 10.1007/s00414-011-0649-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Thomson JA, Pilotti V, Stevens P, Ayres KL, Debenham PG (1999) Validation of short tandem repeat analysis for the investigation of cases of disputed paternity. Forensic Sci Int 100(1–2):1–16PubMedCrossRefGoogle Scholar
  21. 21.
    Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62(6):1408–1415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yan-Mei Huang
    • 1
    Email author
  • Jie Wang
    • 2
  • Zhangping Jiao
    • 2
  • Liu Yang
    • 1
  • Xinning Zhang
    • 1
  • Hui Tang
    • 2
  • Yacheng Liu
    • 2
  1. 1.Department of Forensic Genetics, School of Basic Medical ScienceXinxiang Medical UniversityXinxiangChina
  2. 2.Forensic Medical Identification CentreBeijing Public Security BureauBeijingChina

Personalised recommendations