International Journal of Legal Medicine

, Volume 127, Issue 3, pp 593–601 | Cite as

Determination of psilocin, bufotenine, LSD and its metabolites in serum, plasma and urine by SPE-LC-MS/MS

  • Rafaela MartinEmail author
  • Jennifer Schürenkamp
  • Angela Gasse
  • Heidi Pfeiffer
  • Helga Köhler
Original Article


A validated method for the simultaneous determination of psilocin, bufotenine, lysergic acid diethylamide and its metabolites in serum, plasma and urine using liquid chromatography–electrospray ionization/tandem mass spectrometry was developed. During the solid-phase extraction procedure with polymeric mixed-mode cation exchange columns, the unstable analytes were protected by ascorbic acid, drying with nitrogen and exclusion of light. The limits of detection and quantitation for all analytes were low. Recovery was ≥86 % for all analytes and no significant matrix effects were observed. Interday and intraday imprecisions at different concentrations ranged from 1.1 to 8.2 % relative standard deviation, bias was within ±5.3 %. Processed samples were stable in the autosampler for at least 2 days. Furthermore, freeze/thaw and long-term stability were investigated. The method was successfully applied to authentic serum and urine samples.


Hallucinogens LC-MS/MS Solid-phase extraction Validation 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Horita A, Weber LJ (1961) The enzymic dephosphorylation and oxidation of psilocybin and pscilocin by mammalian tissue homogenates. Biochem Pharmacol 7:47–54PubMedCrossRefGoogle Scholar
  2. 2.
    Hasler F, Bourquin D, Brenneisen R, Bär T, Vollenweider FX (1997) Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm Acta Helv 72:175–184PubMedCrossRefGoogle Scholar
  3. 3.
    Hofmann A, Heim R, Brack A, Kobel H, Frey A, Ott H, Petrzilka T, Troxler F (1959) Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv Chim Acta 42:1557–1572CrossRefGoogle Scholar
  4. 4.
    Geschwinde T (2003) Rauschdrogen, Marktformen und Wirkungsweisen. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    European Monitoring Centre for Drugs and Drug Addiction (2006) EMCDDA Thematic Papers—Hallucinogenic mushrooms: an emerging trend case study. Accessed 13 Jul 2011
  6. 6.
    Grieshaber AF, Moore KA, Levine B (2001) The detection of psilocin in human urine. J Forensic Sci 46:627–630PubMedGoogle Scholar
  7. 7.
    Kamata T, Nishikawa M, Katagi M, Tsuchihashi H (2003) Optimized glucuronide hydrolysis for the detection of psilocin in human urine samples. J Chromatogr B 796:421–427CrossRefGoogle Scholar
  8. 8.
    Kamata T, Nishikawa M, Katagi M, Tsuchihashi H (2006) Direct detection of serum psilocin glucuronide by LC/MS and LC/MS/MS: time-courses of total and free (unconjugated) psilocin concentrations in serum specimens of a “magic mushroom” user. Forensic Toxicol 24:36–40CrossRefGoogle Scholar
  9. 9.
    Kärkkäinen J, Räisänen M, Huttunen MO, Kallio E, Naukkarinen H, Virkkunen M (1995) Urinary excretion of bufotenin (N,N-dimethyl-5-hydroxytryptamine) is increased in suspicious violent offenders: a confirmatory study. Psychiatry Res 58:145–152PubMedCrossRefGoogle Scholar
  10. 10.
    Lyttle T, Goldstein D, Gartz J (1996) Bufo toads and bufotenine: fact and fiction surrounding an alleged psychedelic. J Psychoactive Drugs 28:267–290PubMedCrossRefGoogle Scholar
  11. 11.
    Johansen SS, Jensen JL (2005) Liquid chromatography-tandem mass spectrometry determination of LSD, ISO-LSD, and the main metabolite 2-oxo-3-hydroxy-LSD in forensic samples and application in a forensic case. J Chromatogr B 825:21–28CrossRefGoogle Scholar
  12. 12.
    Reuschel SA, Eades D, Foltz RL (1999) Recent advances in chromatographic and mass spectrometric methods for determination of LSD and its metabolites in physiological specimens. J Chromatogr B 733:145–159CrossRefGoogle Scholar
  13. 13.
    Holzmann P (1995) Bestimmung von Psilocybin-Metaboliten im Humanplasma und -urin. Dissertation, Eberhard-Karls-UniversitätGoogle Scholar
  14. 14.
    Skopp G, Pötsch L, Mattern R, Aderjan R (2002) Short-term stability of lysergic acid diethylamide (LSD), N-desmethyl-LSD, and 2-oxo-3-hydroxy-LSD in urine, assessed by liquid chromatography-tandem mass spectrometry. Clin Chem 48:1615–1618PubMedGoogle Scholar
  15. 15.
    Papac DI, Foltz RL (1990) Measurement of lysergic acid diethylamide (LSD) in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. J Anal Toxicol 14:189–190PubMedGoogle Scholar
  16. 16.
    Saito K, Toyo’oka T, Fukushima T, Kato M, Shirota O, Goda Y (2004) Determination of psilocin in magic mushrooms and rat plasma by liquid chromatography with fluorimetry and electrospray ionization mass spectrometry. Anal Chim Acta 527:149–156CrossRefGoogle Scholar
  17. 17.
    Björnstad K, Beck O, Helander A (2009) A multi-component LC-MS/MS method for detection of ten plant-derived psychoactive substances in urine. J Chromatogr B 877:1162–1168CrossRefGoogle Scholar
  18. 18.
    Sticht G, Käferstein H (2000) Detection of psilocin in body fluids. Forensic Sci Int 113:403–407PubMedCrossRefGoogle Scholar
  19. 19.
    Bogusz MJ (2000) Liquid chromatography-mass spectrometry as a routine method in forensic sciences: a proof of maturity. J Chromatogr B 748:3–19CrossRefGoogle Scholar
  20. 20.
    del Mar Ramirez Fernandez M, Laloup M, Wood M, De Boeck G, Lopez-Rivadulla M, Wallemacq P, Samyn N (2007) Liquid chromatography-tandem mass spectrometry method for the simultaneous analysis of multiple hallucinogens, chlorpheniramine, ketamine, ritalinic acid, and metabolites, in urine. J Anal Toxicol 31:497–504PubMedGoogle Scholar
  21. 21.
    Elian AA, Hackett J, Telepchak MJ (2011) Analysis of psilocybin and psilocin in urine using SPE and LC-tandem mass spectrometry. LC-GC North America 29:854–859Google Scholar
  22. 22.
    Sklerov JH, Magluilo J, Shannon KK, Smith ML (2000) Liquid chromatography-electrospray ionization mass spectrometry for the detection of lysergide and a major metabolite, 2-oxo-3-hydroxy-LSD, in urine and blood. J Anal Toxicol 24:543–549PubMedGoogle Scholar
  23. 23.
    Bodin K, Svensson J (2001) Determination of LSD in urine with high-performance liquid chromatography-mass spectrometry. Ther Drug Monit 23:389–393PubMedCrossRefGoogle Scholar
  24. 24.
    Canezin J, Cailleux A, Turcant A, Le Bouil A, Harry P, Allain P (2001) Determination of LSD and its metabolites in human biological fluids by high-performance liquid chromatography with electrospray tandem mass spectrometry. J Chromatogr B 765:15–27CrossRefGoogle Scholar
  25. 25.
    Favretto D, Frison G, Maietti S, Ferrara S (2007) LC-ESI-MS/MS on an ion trap for the determination of LSD, iso-LSD, nor-LSD and 2-oxo-3-hydroxy-LSD in blood, urine and vitreous humor. Int J Legal Med 121:259–265PubMedCrossRefGoogle Scholar
  26. 26.
    Chung A, Hudson J, McKay G (2009) Validated ultra-performance liquid chromatography-tandem mass spectrometry method for analyzing LSD, iso-LSD, nor-LSD, and O-H-LSD in blood and urine. J Anal Toxicol 33:253–259PubMedGoogle Scholar
  27. 27.
    Horn CK, Klette KL, Stout PR (2003) LC-MS analysis of 2-oxo-3-hydroxy LSD from urine using a Speedisk positive-pressure processor with Cerex(r) PolyChrom(tm) CLIN II Columns. J Anal Toxicol 27:459–463PubMedGoogle Scholar
  28. 28.
    Concheiro M, De Castro A, Quintela O, Cruz A, López-Rivadulla M (2007) Determination of illicit drugs and their metabolites in human urine by liquid chromatography tandem mass spectrometry including relative ion intensity criterion. J Anal Toxicol 31:573–580PubMedGoogle Scholar
  29. 29.
    Forsström J, Tuominen J, Kärkkäinen T (2001) Determination of potentially hallucinogenic N-dimethylated indoleamines in human urine by HPLC/ESI-MS-MS. Scand J Clin Lab Invest 61:547–556PubMedCrossRefGoogle Scholar
  30. 30.
    Kärkkäinen J, Forsström T, Tornaeus J, Wähälä K, Kiuru P, Honkanen A, Stenman U, Turpeinen U, Hesso A (2005) Potentially hallucinogenic 5–hydroxytryptamine receptor ligands bufotenine and dimethyltryptamine in blood and tissues. Scand J Clin Lab Invest 65:189–199PubMedCrossRefGoogle Scholar
  31. 31.
    Kostakis C, Byard RW (2009) Sudden death associated with intravenous injection of toad extract. Forensic Sci Int 188:e1–e5PubMedCrossRefGoogle Scholar
  32. 32.
    Riceberg LJ, Vunakis HV (1978) Determination of N,N-dimethylindolealkylamines in plasma, blood and urine extracts by radioimmunoassay and high pressure liquid chromatography. J Pharmacol Exp Ther 206:158–166PubMedGoogle Scholar
  33. 33.
    Peters F, Hartung M, Herbold M, Schmitt G, Daldrup T, Mußhoff F (2009) Anhang B zur Richtlinie der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen: Anforderungen an die Validierung von Analysenmethoden. Toxichem Krimtech 76:185–208Google Scholar
  34. 34.
    Martin R, Schürenkamp J, Pfeiffer H, Köhler H (2012) A validated method for quantitation of psilocin in plasma by LC-MS/MS and study of stability. Int J Legal Med 126:845–849PubMedCrossRefGoogle Scholar
  35. 35.
    Hasler F, Bourquin D, Brenneisen R, Vollenweider FX (2002) Renal excretion profiles of psilocin following oral administration of psilocybin: a controlled study in man. J Pharm Biomed Anal 30:331–339PubMedCrossRefGoogle Scholar
  36. 36.
    Räisänen MJ (1984) The presence of free and conjugated bufotenin in normal human urine. Life Sci 34:2041–2045PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rafaela Martin
    • 1
    Email author
  • Jennifer Schürenkamp
    • 1
  • Angela Gasse
    • 1
  • Heidi Pfeiffer
    • 1
  • Helga Köhler
    • 1
  1. 1.Institute of Legal MedicineUniversity Hospital MünsterMünsterGermany

Personalised recommendations