International Journal of Legal Medicine

, Volume 127, Issue 3, pp 667–676 | Cite as

Skeletal age estimation based on medial clavicle—a test of the method reliability

  • Petar Milenkovic
  • Ksenija Djukic
  • Danijela Djonic
  • Petar Milovanovic
  • Marija DjuricEmail author
Original Article


In order to establish a reliable age indicator in the period when all other epiphyseal age indicators have already been inactivated, medial clavicle as the bone with the longest period of growth became the object of various investigations. However, the lack of population-specific method often made it unreliable in some regions. The current study involved a Balkan population and it was designed in order to examine whether morphological, radiological, and histological analyses of medial clavicles could be applied with success in age assessment of individuals beyond their twenties in anthropological and forensic practice. The medial clavicular specimens were collected from contemporary Serbian population, autopsied in the period from 1998 to 2001, encompassing 67 individuals (42 males and 25 females) with the age range from 20 to 90 years. The conducted analyses of morphological features identified the epiphyseal union timing, signs of lipping in the region of the notch for the first rib as well as exostoses and bone overgrowths of the articular surface margin as age-dependent attributes. Trabecular bone volume fraction and minimum trabecular width were also highlighted as age-distinctive microscopic features. Sex difference was ascertainable in epiphyseal union timing, morphology of the notch for the first rib, margin of the articular surface, and basic morphology of articular surface as well as in two microscopic characteristics: trabecular bone volume fraction and minimum trabecular width. The study managed to identify several age- and sex-related features that could be applied as additional guidance for age estimation in Serbian population.


Medial clavicle Morphology Histology Sex dependence Age assessment 



This study is supported by the Ministry of Science of Republic of Serbia, Grant No. 45005.

Conflict of interest

Authors declare that they have no conflicts of interest.


  1. 1.
    Brooks S, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsádi–Nemeskéri and Suchey–Brooks methods. Hum Evol 5(3):227–238. doi: 10.1007/BF02437238 CrossRefGoogle Scholar
  2. 2.
    Iscan MY, Loth SR, Wright RK (1984) Metamorphosis at the sternal rib end: a new method to estimate age at death in white males. Am J Phys Anthropol 65(2):147–156. doi: 10.1002/ajpa.1330650206 PubMedCrossRefGoogle Scholar
  3. 3.
    Iscan MY, Loth SR, Wright RK (1985) Age estimation from the rib by phase analysis: white females. J Forensic Sci 30(3):853–863PubMedGoogle Scholar
  4. 4.
    Cannet C, Baraybar JP, Kolopp M, Meyer P, Ludes B (2011) Histomorphometric estimation of age in paraffin-embedded ribs: a feasibility study. Int J Legal Med 125(4):493–502. doi: 10.1007/s00414-010-0444-6 PubMedCrossRefGoogle Scholar
  5. 5.
    Dudar JC, Pfeiffer S, Saunders SR (1993) Evaluation of morphological and histological adult skeletal age-at-death estimation techniques using ribs. J Forensic Sci 38(3):677–685PubMedGoogle Scholar
  6. 6.
    Iscan MY, Kennedy KAR (1989) Reconstruction of life from the skeleton. Liss, New YorkGoogle Scholar
  7. 7.
    Black S, Scheuer L (1996) Age changes in the clavicle: from the early neonatal period to skeletal maturity. Int J Osteoarchaeol 6:425–434. doi: 10.1002/(SICI)1099-1212(199612)6:5<425::AID-OA287>3.0.CO;2-U CrossRefGoogle Scholar
  8. 8.
    Shirley NR (2009) Age and sex estimation from the human clavicle: an investigation of traditional and novel methods. Dissertation, The University of Tennessee, KnoxvilleGoogle Scholar
  9. 9.
    Owings Webb PA, Suchey JM (1985) Epiphyseal union of the anterior iliac crest and medial clavicle in the modern multiracial sample of American males and females. Am J Phys Anthropol 68:457–466CrossRefGoogle Scholar
  10. 10.
    Singh J, Chavali KH (2011) Age estimation from clavicular epiphyseal union sequencing in a Northwest Indian population of the Chandigarh region. J Forensic Leg Med 18(2):82–87. doi: 10.1016/j.jflm.2010.12.005 PubMedCrossRefGoogle Scholar
  11. 11.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rosing FW, Rotzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460. doi: 10.1007/s00414-008-0254-2 PubMedCrossRefGoogle Scholar
  12. 12.
    Schmeling A, Olze A, Reisinger W, Konig M, Geserick G (2003) Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charite. Leg Med (Tokyo) 5(1):367–371CrossRefGoogle Scholar
  13. 13.
    Schmeling A, Olze A, Reisinger W, Rosing FW, Geserick G (2003) Forensic age diagnostics of living individuals in criminal proceedings. Homo 54(2):162–169PubMedCrossRefGoogle Scholar
  14. 14.
    Schulz R, Muhler M, Reisinger W, Schmidt S, Schmeling A (2008) Radiographic staging of ossification of the medial clavicular epiphysis. Int J Legal Med 122(1):55–58. doi: 10.1007/s00414-007-0210-6 PubMedCrossRefGoogle Scholar
  15. 15.
    Garamendi PM, Landa MI, Botella MC, Aleman I (2011) Forensic age estimation on digital X-ray images: medial epiphyses of the clavicle and first rib ossification in relation to chronological age. J Forensic Sci 56(Suppl 1):S3–S12. doi: 10.1111/j.1556-4029.2010.01626.x PubMedCrossRefGoogle Scholar
  16. 16.
    Schmeling A, Schulz R, Reisinger W, Muhler M, Wernecke KD, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118(1):5–8. doi: 10.1007/s00414-003-0404-5 PubMedCrossRefGoogle Scholar
  17. 17.
    Kreitner KF, Schweden FJ, Riepert T, Nafe B, Thelen M (1998) Bone age determination based on the study of the medial extremity of the clavicle. Eur Radiol 8(7):1116–1122PubMedCrossRefGoogle Scholar
  18. 18.
    Caldas IM, Julio P, Simoes RJ, Matos E, Afonso A, Magalhaes T (2011) Chronological age estimation based on third molar development in a Portuguese population. Int J Legal Med 125(2):235–243. doi: 10.1007/s00414-010-0531-8 PubMedCrossRefGoogle Scholar
  19. 19.
    Rissech C, Wilson J, Winburn AP, Turbon D, Steadman D (2012) A comparison of three established age estimation methods on an adult Spanish sample. Int J Legal Med 126(1):145–155. doi: 10.1007/s00414-011-0586-1 PubMedCrossRefGoogle Scholar
  20. 20.
    Thevissen PW, Kaur J, Willems G (2012) Human age estimation combining third molar and skeletal development. Int J Legal Med 126(2):285–292. doi: 10.1007/s00414-011-0639-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Meijerman L, Maat GJ, Schulz R, Schmeling A (2007) Variables affecting the probability of complete fusion of the medial clavicular epiphysis. Int J Legal Med 121(6):463–468. doi: 10.1007/s00414-007-0189-z PubMedCrossRefGoogle Scholar
  22. 22.
    Schmeling A, Schulz R, Danner B, Rosing FW (2006) The impact of economic progress and modernization in medicine on the ossification of hand and wrist. Int J Legal Med 120(2):121–126. doi: 10.1007/s00414-005-0007-4 PubMedCrossRefGoogle Scholar
  23. 23.
    Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Legal Med 113(5):253–258PubMedCrossRefGoogle Scholar
  24. 24.
    Schaefer MC, Black SM (2005) Comparison of ages of epiphyseal union in North American and Bosnian skeletal material. J Forensic Sci 50(4):777–784PubMedCrossRefGoogle Scholar
  25. 25.
    Schaefer MC, Black SM (2007) Epiphyseal union sequencing: aiding in the recognition and sorting of commingled remains. J Forensic Sci 52(2):277–285. doi: 10.1111/j.1556-4029.2006.00381.x PubMedCrossRefGoogle Scholar
  26. 26.
    Djuric M, Djonic D, Nikolic S, Popovic D, Marinkovic J (2007) Evaluation of the Suchey-Brooks method for aging skeletons in the Balkans. J Forensic Sci 52(1):21–23. doi: 10.1111/j.1556-4029.2006.00333.x PubMedCrossRefGoogle Scholar
  27. 27.
    Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: a multifactorial approach. Forensic Sci Int 212(1–3):273 e271–275. doi: 10.1016/j.forsciint.2011.06.007 Google Scholar
  28. 28.
    Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Legal Med 124(2):149–154. doi: 10.1007/s00414-009-0398-8 PubMedCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Country Income Classification as of July 2011. The Henry J. Kaiser Family Foundation Accessed 26 May 2012
  31. 31.
    McKern TW, Stewart TD (1957) Skeletal age changes in young American males (trans: Division EPR). Natick, MassachusettsGoogle Scholar
  32. 32.
    Langley-Shirley N, Jantz RL (2010) A Bayesian approach to age estimation in modern Americans from the clavicle. J Forensic Sci 3:571–583. doi: 10.1111/j.1556-4029.2010.01089.x CrossRefGoogle Scholar
  33. 33.
    Iscan MY (1989) Age markers in the human skeleton. Thomas, SpringfieldGoogle Scholar
  34. 34.
    Jowsey J (1966) Studies of Haversian systems in man and some animals. J Anat 100(Pt 4):857–864PubMedGoogle Scholar
  35. 35.
    Stout SD, Gehlert SJ (1980) The relative accuracy and reliability of histological aging methods. Forensic Sci Int 15(3):181–190PubMedCrossRefGoogle Scholar
  36. 36.
    Stout SD, Paine RR (1992) Brief communication: histological age estimation using rib and clavicle. Am J Phys Anthropol 87(1):111–115. doi: 10.1002/ajpa.1330870110 PubMedCrossRefGoogle Scholar
  37. 37.
    Thomas CD, Stein MS, Feik SA, Wark JD, Clement JG (2000) Determination of age at death using combined morphology and histology of the femur. J Anat 196(Pt 3):463–471PubMedCrossRefGoogle Scholar
  38. 38.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610. doi: 10.1002/jbmr.5650020617 PubMedCrossRefGoogle Scholar
  39. 39.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174PubMedCrossRefGoogle Scholar
  40. 40.
    Djuric M, Djonic D, Milovanovic P, Nikolic S, Marshall R, Marinkovic J, Hahn M (2010) Region-specific sex-dependent pattern of age-related changes of proximal femoral cancellous bone and its implications on differential bone fragility. Calcif Tissue Int 86(3):192–201. doi: 10.1007/s00223-009-9325-8 PubMedCrossRefGoogle Scholar
  41. 41.
    Lochmuller EM, Matsuura M, Bauer J, Hitzl W, Link TM, Muller R, Eckstein F (2008) Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J Bone Miner Res 23(12):1964–1973. doi: 10.1359/jbmr.080709 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Petar Milenkovic
    • 1
    • 2
  • Ksenija Djukic
    • 1
  • Danijela Djonic
    • 1
  • Petar Milovanovic
    • 1
  • Marija Djuric
    • 1
    Email author
  1. 1.School of Medicine, Institute of Anatomy, Laboratory for AnthropologyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Oncology and Radiology of SerbiaBelgradeSerbia

Personalised recommendations