Skip to main content
Log in

Pressure cycling technology (PCT) reduces effects of inhibitors of the PCR

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2014

Abstract

A common problem in the analysis of forensic human DNA evidence, or for that matter any nucleic acid analysis, is the presence of contaminants or inhibitors. Contaminants may copurify with the DNA, inhibiting downstream PCR or they may present samples effectively as containing fewer templates than exist in the PCR, even when the actual amount of DNA is adequate. Typically, these challenged samples exhibit allele imbalance, allele dropout, and sequence-specific inhibition, leading to interpretational difficulties. Lessening the effects of inhibitors may increase the effective yield of challenged low template copy samples. High pressure may alter some inhibitors and render them less effective at reducing the yield of PCR products. In an attempt to enhance the amplicon yield of inhibited DNA samples, pressure cycling technology was applied to DNA exposed to various concentrations of hematin (0, 1.25, 2.5, 5, and 7 μM) and humic acid (0, 1.25, 2.5, 5, and 7 ng/μL). The effect of high pressure on the inhibitors, and subsequently the PCR process, was assessed by measuring DNA quantity by quantitative PCR and evaluating short tandem repeat typing results. The results support that pressure cycling technology reduces inhibitory effects and thus, in effect, enhances yield of contaminated amplified products of both hematin and humic acid contaminate samples. Based on the results obtained in this study, this method can improve the ability to type challenged or inhibited DNA samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alaeddini R (2012) Forensic implications of PCR inhibition—a review. Forensic Sci Int Genet 6:297–305

    Google Scholar 

  2. Eilert KD, Foran DR (2009) Polymerase resistance to polymerase chain reaction inhibitors in bone*. J Forensic Sci 54(5):1001–1007

    Article  PubMed  CAS  Google Scholar 

  3. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  PubMed  CAS  Google Scholar 

  4. Funes-Huacca ME, Opel K, Thompson R, McCord BR (2011) A comparison of the effects of PCR inhibition in quantitative PCR and forensic STR analysis. Electrophoresis 32(9):1084–1089

    Article  PubMed  CAS  Google Scholar 

  5. Kontanis EJ, Reed FA (2006) Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. J Forensic Sci 51(4):795–804

    Article  PubMed  CAS  Google Scholar 

  6. Radstrom P, Lofstrom C, Lovenklev M, Knutsson R, Wolffs P (2008) Strategies for overcoming PCR inhibition. CSH Protoc 2008:pdb.top20

  7. Hudlow WR, Chong MD, Swango KL, Timken MD, Buoncristiani MR (2008) A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: a diagnostic tool for STR typing. Forensic Sci Int: Genet 2(2):108–125

    Article  Google Scholar 

  8. King C, Debruyne R, Kuch M, Schwarz C, Poinar H (2009) A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts. Biotechniques 47(5):941–949

    Article  PubMed  CAS  Google Scholar 

  9. Huggett JF, Novak T, Garson JA, Green C, Morris-Jones SD, Miller RF et al (2008) Differential susceptibility of PCR reactions to inhibitors: An important and unrecognised phenomenon. BMC Res Notes 1:70

    Article  PubMed  Google Scholar 

  10. Graham EA (2008) DNA reviews: low level DNA profiling. Forensic Sci Med Pathol 4(2):129–131

    Article  PubMed  CAS  Google Scholar 

  11. Budowle B, Eisenberg AJ, van Daal A (2009) Validity of low copy number typing and applications to forensic science. Croat Med J 50(3):207–217

    Article  PubMed  CAS  Google Scholar 

  12. Irwin JA, Leney MD, Loreille O, Barritt SM, Christensen AF, Holland TD et al (2007) Application of low copy number STR typing to the identification of aged, degraded skeletal remains. J Forensic Sci 52(6):1322–1327

    PubMed  CAS  Google Scholar 

  13. Smith PJ, Ballantyne J (2007) Simplified low-copy-number DNA analysis by post-PCR purification. J Forensic Sci 52(4):820–829

    Article  PubMed  CAS  Google Scholar 

  14. Kloosterman AD, Kersbergen P (2003) Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci. J Soc Biol 197(4):351–359

    PubMed  CAS  Google Scholar 

  15. Gross V, Carlson G, Kwan AT, Smejkal G, Freeman E, Ivanov AR et al (2008) Tissue fractionation by hydrostatic pressure cycling technology: the unified sample preparation technique for systems biology studies. J Biomol Tech 19(3):189–199

    PubMed  Google Scholar 

  16. Smejkal GB, Robinson MH, Lawrence NP, Tao F, Saravis CA, Schumacher RT (2006) Increased protein yields from Escherichia coli using pressure-cycling technology. J Biomol Tech 17(2):173–175

    PubMed  Google Scholar 

  17. Smejkal GB, Witzmann FA, Ringham H, Small D, Chase SF, Behnke J et al (2007) Sample preparation for two-dimensional gel electrophoresis using pressure cycling technology. Anal Biochem 363(2):309–311

    Article  PubMed  CAS  Google Scholar 

  18. Occhipinti E, Bec N, Gambirasio B, Baietta G, Martelli PL, Casadio R et al (2006) Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions: Sulfolobus solfataricus carboxypeptidase as a model enzyme. Biochimica et Biophysica Acta (BBA) - Proteins Proteomics 1764(3):563–572

    Article  CAS  Google Scholar 

  19. Delgado A, Kulisiewicz L, Rauh C, Benning R (2010) Basic aspects of phase changes under high pressure. Ann N Y Acad Sci 1189:16–23

    Article  PubMed  Google Scholar 

  20. Winter R, Dzwolak W (2004) Temperature-pressure configurational landscape of lipid bilayers and proteins. Cell Mol Biol (Noisy-le-grand) 50(4):397–417

    CAS  Google Scholar 

  21. McCoy J, Hubbell WL (2011) High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. Proc Natl Acad Sci U S A 108(4):1331–1336

    Article  PubMed  CAS  Google Scholar 

  22. Considine KM, Kelly AL, Fitzgerald GF, Hill C, Sleator RD (2008) High-pressure processing ? Effects on microbial food safety and food quality. FEMS Microbiol Lett 281(1):1–9

    Article  PubMed  CAS  Google Scholar 

  23. Paschke A (2009) Aspects of food processing and its effect on allergen structure. Mol Nutr Food Res 53(8):959–962

    Article  PubMed  CAS  Google Scholar 

  24. Lopes MLM, Valente Mesquita VL, Chiaradia ACN, Fernandes AAR, Fernandes PMB (2010) High hydrostatic pressure processing of tropical fruits. Ann N Y Acad Sci 1189(1):6–15

    Article  PubMed  Google Scholar 

  25. Van Eldik R, KlÃrner FG (2008) High pressure chemistry: synthetic, mechanistic, and supercritical applications. Wiley, New York

  26. Masson P, Tonello C, Balny C (2001) High-pressure biotechnology in medicine and pharmaceutical science. J Biomed Biotechnol 1(2):85–88

    Article  PubMed  CAS  Google Scholar 

  27. Balny C (2006) What lies in the future of high-pressure bioscience? Biochim Biophys Acta 1764(3):632–639

    Google Scholar 

  28. Balny C, Masson P, Heremans K (2002) High pressure effects on biological macromolecules: From structural changes to alteration of cellular processes. Biochim Biophys Acta 1595(1–2):3–10

    Article  PubMed  CAS  Google Scholar 

  29. Opel KL, Chung D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55(1):25–33

    Article  PubMed  CAS  Google Scholar 

  30. Puntharod R, Webster GT, Asghari-Khiavi M, Bambery KR, Safinejad F, Rivadehi S et al (2010) Supramolecular interactions playing an integral role in the near-infrared raman “excitonic” enhancement observed in beta-hematin (malaria pigment) and other related heme derivatives. J Phys Chem B 114(37):12104–12115

    Article  PubMed  CAS  Google Scholar 

  31. Zahra N, Hadi S, Smith JA, Iyengar A, Goodwin W (2011) Development of internal amplification controls for DNA profiling with the AmpFlSTR((R)) SGM plus((R)) kit. Electrophoresis 32(11):1371–1378

    Article  PubMed  CAS  Google Scholar 

  32. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39(2):362–372

    PubMed  CAS  Google Scholar 

  33. Comey CT (1994) DNA extraction strategies for amplified fragment length polymorphism analysis. J Forensic Sci 39:1254

    CAS  Google Scholar 

  34. de Franchis R, Cross NC, Foulkes NS, Cox TM (1988) A potent inhibitor of taq polymerase copurifies with human genomic DNA. Nucleic Acids Res 16(21):10355

    Article  PubMed  Google Scholar 

  35. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62(3):1102–1106

    PubMed  CAS  Google Scholar 

  36. Watson RJ, Blackwell B (2000) Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Can J Microbiol 46(7):633–642

    Article  PubMed  CAS  Google Scholar 

  37. Amory S, Huel R, Bilić A, Loreille O, Parsons TJ (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int: Genet 6(3):398–406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by award no. 2009-DN-BX-K188, awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication/program/exhibition are those of the author(s) and do not necessarily reflect those of the Department of Justice.

Conflict of interest

The authors PLM, JLK, and BB declare that they have no conflict of interest. Authors NPL, AL, and VSG are employed by Pressure Biosciences Incorporated.

Ethical standards

The work described above was performed in accordance with all laws (both Federal and State) that apply to research, researcher conduct, and the protection of human test subjects. We also operate under the guidance of and in accordance with the policies of the UNTHSC Institutional Review Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela L. Marshall.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00414-014-1047-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, P.L., King, J.L., Lawrence, N.P. et al. Pressure cycling technology (PCT) reduces effects of inhibitors of the PCR. Int J Legal Med 127, 321–333 (2013). https://doi.org/10.1007/s00414-012-0770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0770-y

Keywords

Navigation