International Journal of Legal Medicine

, Volume 126, Issue 5, pp 739–746 | Cite as

Drying properties of bloodstains on common indoor surfaces

  • Frank RamsthalerEmail author
  • Peter Schmidt
  • Roman Bux
  • Stefan Potente
  • Cristina Kaiser
  • Mattias Kettner
Original Article


When blood reaches an extracorporeal surface, a drying process is initiated. Properties of this drying process may be crucial for the correct assessment of case-specific time lapses, however, there is a lack of systematic studies concerning the drying times of blood. We present a study on drying properties of small blood droplets with a standardized size of 25 μl (resembling droplets originating from pointed and sharp objects, e.g. the tip of a knife) under different environmental conditions to elucidate the effect of different ambient temperatures, indoor surfaces and anticoagulant treatment. As a rule of thumb, wiping a typical small blood droplet will not lead to a macroscopically visible smear after a time period of approximately 60 min (timemin = 45 min; timemax = 75 min) at an average room temperature of 20 °C. Alteration of the ambient temperature has a remarkable effect, as the time needed for the drying process leading to wipe resistance of the droplets decreases to 30 min (timemin) at an ambient temperature of 24 °C, and is prolonged up to >120 min (timemax) at an ambient temperature of 15 °C. As for the surface materials in our study, significant differences in drying periods were only found between wood and linoleum (80th percentile 45 vs. 75 min). Treatment with anticoagulants did not influence extracorporeal drying times. In synopsis, the present study shows that ambient temperature is a major determinant of the drying process of blood droplets and should always be documented accurately and continuously on a crime scene. In certain situations, an estimation of the time elapsed since bloodstain origination may be of importance to answer questions related to the time course of actions. However, further systematic studies are needed to clarify the effect of other properties such as droplet size, humidity, or evaporation.


Forensic science Bloodstain pattern analysis Drying properties Wipe characteristics Anticoagulant treatment 


Disclosure/conflict of interest

We have no conflict of interest to declare.


  1. 1.
    Peschel O, Kunz SN, Rothschild MA, Mützel E (2011) Blood stain pattern analysis. Forensic Sci Med Pathol 7(3):257–270PubMedCrossRefGoogle Scholar
  2. 2.
    White RB (1986) Bloodstain pattern of fabrics—the effect of drop volume, dropping height and impact angle. J Canadian Society Forensic Sci 19(1):3–36Google Scholar
  3. 3.
    Stuart HJ, Kish PE, Sutton TP (2005) Principles of bloodstain pattern analysis. Theory and Practice. Taylor & Francis, Boca RatonGoogle Scholar
  4. 4.
    Karger B, Rand SP, Brinkmann B (1998) Experimental bloodstains on fabric from contact and from droplets. Int J Legal Med 111(1):17–21PubMedCrossRefGoogle Scholar
  5. 5.
    Rothschild MA (2008) Analyse des Blutspurenverteilungsmusters. In: Kneubuehl BP, Coupland RM, Rothschild MA, Thali MJ (eds) Wundballistik, 3. Aufl. Springer, BerlinGoogle Scholar
  6. 6.
    Rand S, Madea B, Brinkmann B (1985) Zur Morphologie von Blutspuren. Beitr Gerichtl Med XLIII:259–264Google Scholar
  7. 7.
    Mac Donell HL (1993) Bloodstain patterns. Golas, NYGoogle Scholar
  8. 8.
    Bevel T, Gardener RM (1997) Bloodstain pattern analysis with an introduction to crime scene reconstruction. CRC, Boca EatonGoogle Scholar
  9. 9.
    Karger B, Rand S, Fracasso T, Pfeiffer H (2008) Bloodstain pattern analysis—casework experience. Forensic Sci Int 181:15–20PubMedCrossRefGoogle Scholar
  10. 10.
    Kettner M, Ramsthaler F, Schnabel A (2010) “Bubbles” a spot diagnosis. J Forensic Sci 55(3):842–844PubMedCrossRefGoogle Scholar
  11. 11.
    Sauvageau A, Schellenberg M, Racette S, Julien F (2007) Bloodstain pattern analysis in a case of fatal varicose vein rupture. Am J Forensic Med Pathol 28:35–37PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson CI, Altschul S, Mead A, Flannagan LM (2004) Bloodstain pattern analysis in a case of suicide with a compound bow and arrow. Am J Forensic Med Pathol 25:80–82PubMedCrossRefGoogle Scholar
  13. 13.
    Barni F, Lewis SW, Berti A, Miskelly GM, Lago G (2007) Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72:896–913PubMedCrossRefGoogle Scholar
  14. 14.
    Laux DL (1991) Effects on luminol on the subsequent analysis of bloodstains. J Forensic Sci 36:1512PubMedGoogle Scholar
  15. 15.
    Laux DL (2005) The detection of blood using luminol. In: James S, Kish PE, Sutton TP (eds) Principles of bloodstain pattern analysis: theory and practice. CRC, Boca Raton, pp 369–389Google Scholar
  16. 16.
    Lytle LT, Hedgecock DG (1978) Chemiluminescence in the visualization of forensic bloodstains. J Forensic Sci 23:550–555PubMedGoogle Scholar
  17. 17.
    Weber K (1966) Die Anwendung der Chemilumineszenz des Luminols. Z Gerichtl Med 57:410Google Scholar
  18. 18.
    Quickenden TI, Creamer JI (2001) A study of common interferences with the forensic luminol test for blood. Luminescence 16:295–298PubMedCrossRefGoogle Scholar
  19. 19.
    Ackermann K, Ballantyne KN, Kayser M (2010) Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstructionGoogle Scholar
  20. 20.
    Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148:37–45PubMedCrossRefGoogle Scholar
  21. 21.
    Donaldson A, Walker NK, Cordiner SJ, Taylor MC (2010) Using oral microbial DNA analysis to identify expirated bloodspatter. Int J Legal Med 124(6):569–576PubMedCrossRefGoogle Scholar
  22. 22.
    Gardener RM (2002) Directionality in swipe patterns. J Forensic Ident 52(5):579Google Scholar
  23. 23.
    Pizzola PA, Roth S, De Forest PR (1986) Blood droplet dynamics—I. JFSCA 31(1):36–49Google Scholar
  24. 24.
    Pizzola PA, Roth S, De Forest PR (1986) Blood droplet dynamics—II. JFSCA 31(1):50–64Google Scholar
  25. 25.
    Buck U, Kneubuehl B, Näther S, Albertini N, Schmidt L, Thali M (2011) 3D bloodstain pattern analysis: ballistic reconstruction of the trajectories of blood drops and determination of the centres of origin of the bloodstains. Forensic Sci Int 206:22–28PubMedCrossRefGoogle Scholar
  26. 26.
    Donaldson AE, Walker NK, Lamont IL, Cordiner SJ, Taylor MC (2011) Characterising the dynamics of expirated bloodstain pattern formation using high-speed digital video imaging. Int J Legal Med 125:757–762PubMedCrossRefGoogle Scholar
  27. 27.
    Laber TL (1985) Diameter of a bloodstain as a function of origin. Distance fallen and volume of drop. IABPA News 2(1):12–16Google Scholar
  28. 28.
    Laber TL, Epstein BP (1983) Bloodstain pattern analysis. Callen, MinneapolisGoogle Scholar
  29. 29.
    Raymond MA, Smith ER, Liesegang J (1996) The physical properties of blood—forensic considerations. Sci Justice 36:153–160PubMedCrossRefGoogle Scholar
  30. 30.
    Zhao L, Fletcher S, Weaver C, Leonardi-Bee J, May J, Fox S (2005) Effects of aspirin, clopidogrel and dipyridamole administered singly and in combination on platelet and leucocyte function in normal volunteers and patients with prior ischaemic stroke. Thromb Haemost 93(3):527–534PubMedGoogle Scholar
  31. 31.
    Bernstein RA, Albers GW (2005) Oral antiplatelet therapy. JAMA 293:793–794PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Frank Ramsthaler
    • 1
  • Peter Schmidt
    • 1
  • Roman Bux
    • 2
  • Stefan Potente
    • 3
  • Cristina Kaiser
    • 4
  • Mattias Kettner
    • 1
  1. 1.Institute of Forensic MedicineSaarland UniversityHomburg/SaarGermany
  2. 2.Institute of Legal MedicineHeidelberg University HospitalHeidelbergGermany
  3. 3.Institute of Forensic MedicineGoethe University FrankfurtFrankfurt MainGermany
  4. 4.Institute of Legal MedicineLudwig-Maximilian University, MunichMünchenGermany

Personalised recommendations