Skip to main content

Nasal ciliary motility: a new tool in estimating the time of death

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Determination of time since death is one of the most difficult and crucial issue in forensic medicine. Apart from body cooling, which is commonly used in the early postmortem interval (PMI), supravital reactions are the most interesting postmortem changes for time of death estimation. Nasal ciliary motility has been occasionally observed in postmortem period although no studies have focused on this phenomenon for forensic purposes. We aimed to evaluate the diagnostic usefulness of ciliary motility as a potential tool in estimating the time of death. Specimens of ciliated epithelium from 100 consecutive cadavers were obtained by scraping the nasal mucosa at three different postmortem intervals. The samples were then smeared on a slide, and an in vitro evaluation of ciliary movement was analyzed by phase-contrast microscopy. A postmortem nasal ciliary motility was observed, and a statistically significant relationship between decreasing ciliary movements and increasing postmortem interval was detected even in presence of putrefactive changes of nasal ultrastructure integrity. Some peculiar causes of death seem to influence ciliary motility in the early PMI, while no significant correlations with sex or age were observed. According to the results of this study, postmortem evaluation of nasal ciliary motility may be a bona fide and a feasible option for estimating the time of death.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Lundquist F (1956) Physical and chemical methods for the estimation of the time of death. Acta Med Leg Sog Liege 9:205–213

    CAS  Google Scholar 

  2. 2.

    Madea B (2005) Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci Int 151:139–149

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Marshall TK, Hoare FE (1962) Estimating the time of death—the rectal cooling after death and its mathematical expression. J Forensic Sci 7(1):56–81

    Google Scholar 

  4. 4.

    Henßge C (1981) Todeszeitschätzungen durch die mathematische Beschreibung der rektalen Leichenabkühlung unter verschiedenen Abkühlbedingungen. Z Rechtsmed 87:147–178

    PubMed  Article  Google Scholar 

  5. 5.

    Henßge C, Brinkmann B, Püschel K (1984) Todeszeitbestimmung durch Rektaltemperaturmessungen bei Wassersuspension der Leiche. Z Rechtsmed 92:255–276

    PubMed  Article  Google Scholar 

  6. 6.

    Henßge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henßge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Leg Med 113(6):303–319

    Article  Google Scholar 

  7. 7.

    Henßge C, Althaus L, Bolt J, Freislederer A, Haffner HT, Henßge CA, Hoppe B, Schneider V (2000) Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods. Int J Leg Med 113(6):320–331

    Article  Google Scholar 

  8. 8.

    Henßge C, Madea B (2004) Estimation of the time since death in the early postmortem period. Forensic Sci Int 144:167–175

    PubMed  Article  Google Scholar 

  9. 9.

    Henßge C, Knight B, Krompecher T, Madea B, Nokes L (2002) The estimation of the time since death in the early postmortem period. Edward Arnold, London

    Google Scholar 

  10. 10.

    Muggenthaler H, Sinicina I, Hubig M, Mall G (2011) Database of post-mortem rectal cooling cases under strictly controlled conditions: a useful tool in death time estimation. Int J Leg Med 126(1):79–87

    Article  Google Scholar 

  11. 11.

    Hubig M, Muggenthaler H, Mall G (2011) Influence of measurement errors on temperature-based death time determination. Int J Leg Med 125(4):503–517

    Article  Google Scholar 

  12. 12.

    Henßge C (1988) Death time estimation in case work. I. The rectal temperature time of death nomogram. Forensic Sci Int 38:209–236

    PubMed  Article  Google Scholar 

  13. 13.

    Henßge C (1992) Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions. Forensic Sci Int 54:51–56

    PubMed  Article  Google Scholar 

  14. 14.

    Zhou C, Byard RW (2011) Factors and processes causing accelerated decomposition in human cadavers—an overview. J For Leg Med 18:6–9

    Article  Google Scholar 

  15. 15.

    Madea B (1994) Importance of supravitality in forensic medicine. Forensic Sci Int 69:221–241

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Gelardi M (2007) Atlas of nasal cytology for the differential diagnosis of nasal diseases. Centro Scientifico Editore, Torino 21–26 e 16–17

  17. 17.

    Caruso G, Gelardi M, Passali G, De Santi M (2007) Nasal scraping in diagnosing ciliary dyskinesia. Am J Rhinol 21(6):702–705

    PubMed  Article  Google Scholar 

  18. 18.

    Lee R, Rossman C, O’brodovich H (1987) Assessment of post-mortem respiratory ciliary motility and ultrastructure. Am Rev Respir Dis 136:445–447

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Hilding AC (1957) Ciliary streaming in the lower respiratory tract. Am J Physiol 191:404–410

    PubMed  CAS  Google Scholar 

  20. 20.

    Mayer M, Neufeld B (1980) Post-mortem changes in skeletal muscle protease and creatine phosphokinase activity—a possible marker for determination of time of death. Forensic Sci Int 15(3):197–203

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Madea B, Henßge C (1990) Electrical excitability of skeletal muscle postmortem in case work. Forensic Sci Int 47(3):207–227

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Püschel K, Brinkmann B, Lieske K (1985) Ultrastructural alterations of skeletal muscles after electric shock. Am J Forensic Med Pathol 6(4):296–300

    PubMed  Article  Google Scholar 

  23. 23.

    Madea B (2002) Post-mortem mechanical excitation of skeletal muscle. In: Henßge C, Knight B, Krompecher T, Madea B, Nokes L (eds) The estimation of the time since death in the early post-mortem period. Edward Arnold, London, pp 160–164

    Google Scholar 

  24. 24.

    Madea B (2002) Post-mortem electrical excitability of skeletal muscle in case-work. In: Henßge C, Knight B, Krompecher T, Madea B, Nokes L (eds) The estimation of the time since death in the early post-mortem period. Edward Arnold, London, pp 164–206

    Google Scholar 

  25. 25.

    Madea B, Oehmichen M, Henßge C (1986) Postmortem transport of gastric contents? Z Rechtsmed 97(3):201–206

    PubMed  CAS  Google Scholar 

  26. 26.

    Jaffe FA (1989) Stomach contents and the time of death. Reexamination of a persistent question. Am J Forensic Med Pathol 10(1):37–41

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Collins KA, Bennett AT (2001) Persistence of spermatozoa and prostatic acid phosphatase in specimens from deceased individuals during varied post-mortem intervals. Am J Forensic Med Pathol 22(3):228–232

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Baccino E, De Saint ML, Schuliar Y, Guilloteau P, Le Rhun M, Morin JF, Leglise D, Amice J (1996) Outer ear temperature and time of death. Forensic Sci Int 83:133–146

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Cattaneo C, Di Giancamillo A, Campari O, Martrille L, Jouineau C (2009) Infrared tympanic thermography as a substitute for a probe in the evaluation of ear temperature for postmortem interval determination: a pilot study. J Forensic Leg Med 16:215–217

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Jashnani KD, Kale SA, Rupani AB (2010) Vitreous humor: biochemical constituents in estimation of postmortem interval. J Forensic Sci 55(6):1523–1527

    PubMed  Article  Google Scholar 

  31. 31.

    Estracanholli ES, Kurachi C, Vicente JR, Campos De Menezes PF, Castro O, Junior S, Bagnato VS (2009) Determination of postmortem interval using in situ optical fluorescence. Opt Express 17(10):8185–8192

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Singh D, Prashad R, Sharma S, Pandey AN (2006) Estimation of post-mortem interval from human pericardial fluid electrolytes concentrations in Chandigarh zone of India: log transformed linear regression model. Leg Med 8:279–287

    Article  CAS  Google Scholar 

  33. 33.

    Yadav J, Deshpande A, Arora A, Athawal BK, Dubey BP (2007) Estimation of time since death from CSF electrolyte concentration in Bhopal region of central India. Leg Med 9:309–313

    Article  CAS  Google Scholar 

  34. 34.

    Bush A, Chodhari R, Collins N, Copeland F, Hall P, Harcourt J, Hariri M, Hogg C, Lucas J, Mitchison HM, O’Callaghan C, Phillips G (2007) Primary ciliary dyskinesia: current state of the art. Arch Dis Child 92(12):1136–1140

    PubMed  Article  Google Scholar 

  35. 35.

    Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–R535

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Thomas B, Rutman A, O’Callaghan C (2009) Disrupted ciliated epithelium shows ciliary beat frequency and increased dyskinesia. Eur Respirt J 34:401–404

    Article  CAS  Google Scholar 

  37. 37.

    Clary-Meinesz CF, Cosson J, Huitorel P, Blaive B (1992) Temperature effect on the ciliary beat frequency of human nasal and tracheal ciliated cells. Biol Cell 76(3):335–338

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Armengot M, Milara J, Mata M, Carda C, Cortijo J (2010) Cilia motility and structure in primary and secondary ciliary dyskinesia. Am J Rhinol Allergy 24(3):175–180

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Antonio Moschetta for his critical review of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Biagio Solarino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romanelli, M.C., Gelardi, M., Fiorella, M.L. et al. Nasal ciliary motility: a new tool in estimating the time of death. Int J Legal Med 126, 427–433 (2012). https://doi.org/10.1007/s00414-012-0682-x

Download citation

Keywords

  • Nasal ciliary motility
  • Forensic medicine
  • Postmortem interval
  • Time of death