Advertisement

International Journal of Legal Medicine

, Volume 124, Issue 6, pp 595–603 | Cite as

Identification of poisonous plants by DNA barcoding approach

  • Ilaria Bruni
  • Fabrizio De Mattia
  • Andrea Galimberti
  • Gabriele Galasso
  • Enrico Banfi
  • Maurizio Casiraghi
  • Massimo Labra
Original Article

Abstract

The plant exposures are one of the most frequent poisonings reported to poison control centres. The diagnosis of intoxicated patients is usually based on the morphological analysis of ingested plant portions; this procedure requires experience in systematic botany, because the plant identification is based on few evident traits. The objective of this research is to test DNA barcoding approach as a new universal tool to identify toxic plants univocally and rapidly. Five DNA barcode regions were evaluated: three cpDNA sequences (trnH-psbA, rpoB and matK) and two nuclear regions (At103 and sqd1). The performance of these markers was evaluated in three plant groups: (1) a large collection of angiosperms containing different toxic substances, (2) congeneric species showing different degrees of toxicity and (3) congeneric edible and poisonous plants. Based on assessments of PCR, sequence quality and resolution power in species discrimination, we recommend the combination of plastidial and nuclear markers to identify toxic plants. Concerning plastidial markers, matK and trnH-psbA showed consistent genetic variability. However, in agreement with CBOL Plant Working Group, we selected matK as the best marker, because trnH-psbA showed some problems in sequences sizes and alignments. As a final and relevant observation, we also propose the combination of matK with a nuclear marker such as At103 to distinguish toxic hybrids form parental species. In conclusion, our data support the claim that DNA barcoding is a powerful tool for poisonous plant identifications.

Keywords

DNA barcoding Poisonous plants matK trnH-psbA rpoB At103 sqd1 

Notes

Acknowledgements

We are grateful to Dr.ssa Franca Davanzo, Dr.ssa Mami Azuma, and Marco Festa for technical information and assistance in the field. This work was supported by Fondazione Cariplo with the project entitle “Dai geni all'ecosistema: il DNA barcoding come supporto innovativo per la protezione della biodiversità e l'analisi della funzionalità delle reti ecologiche” and by Regione Sardegna with the project entitle “Tassonomia integrata (morfologia e DNA barcoding) per la salvaguardia della biodiversità vegetale della Sardegna”.

Supplementary material

414_2010_447_MOESM1_ESM.doc (132 kb)
Supplementary Table 5 Accession numbers corresponding to DNA sequences of the five analysed markers for each considered species. (DOC 128 kb)

References

  1. 1.
    Burrows GE, Tyrl RJ (2006) Handbook of toxic plants of North America. Blackwell, Ames, pp 55–307Google Scholar
  2. 2.
    Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-question tour to improve users' awareness about the method. Brief Bioinform. doi: 10.1093/bib/bbq003 PubMedGoogle Scholar
  3. 3.
    Chase MW, Salamin N, Wilkinson M et al (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc London [Biol] 360:1889–1895CrossRefGoogle Scholar
  4. 4.
    Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madriñán S, Petersen G et al (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  5. 5.
    Cuènoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB and matK DNA sequences. Am J Bot 89:132–144CrossRefGoogle Scholar
  6. 6.
    Dawnay N, Ogden R, McEwing R, Carvalho GR, Thorpe RS (2007) Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci Int 173:1–6CrossRefPubMedGoogle Scholar
  7. 7.
    Deagle BE, Gales NJ, Evans K, Jarman SN, Robinson S, Trebilco R, Hindel MA (2007) Studying seabird diet through genetic analysis of faeces: a case study on Macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2:e831CrossRefPubMedGoogle Scholar
  8. 8.
    Edeoga HO, Ogbebor NO (1999) Distribution of calcium oxalate crystals in some Nigerian species of Aneilema R. Br. (Commelinaceae). Plant Biosys 133:193–198Google Scholar
  9. 9.
    Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SC (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 3:e2802CrossRefPubMedGoogle Scholar
  10. 10.
    Gardner DR, Pfister JA (2007) Toxic alkaloid concentrations in Delphinium nuttallianum, Delphinium andersonii, and Delphinium geyeri in the Intermountain Region. Rangeland Ecol Manage 60:441–446CrossRefGoogle Scholar
  11. 11.
    Grassi F, Labra M, Minuto L, Casazza G, Sala F (2006) Natural hybridization in Saxifraga callosa Sm. Plant Biol 8:243–252CrossRefPubMedGoogle Scholar
  12. 12.
    Hammouda FM, Rizk AM, El-Missiry MM, Ghaleb HA, Madkour MK, Pohland AE, Wood G (1988) Poisonous plants contaminating edible ones and toxic substances in plant foods iv. phytochemistry and toxicity of Lolium temulentum. Pharm Biol 26:240–245CrossRefGoogle Scholar
  13. 13.
    Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identification through DNA barcodes. Proc R Soc Lond [Biol] 270:313–321CrossRefGoogle Scholar
  14. 14.
    Hollingsworth ML, Clark A, Forrest LL, Richardson JE, Pennington RT, Long D, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009a) Selecting barcoding loci for plants: evaluation of seven candidate loci with species level sampling in three divergent groups of land plants. Mol Ecol Resour 9:439–457CrossRefGoogle Scholar
  15. 15.
    Hollingsworth PM, Forresta LL, Spougeb JL et al (2009b) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRefGoogle Scholar
  16. 16.
    Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508CrossRefPubMedGoogle Scholar
  17. 17.
    Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374CrossRefPubMedGoogle Scholar
  18. 18.
    Labra M, Miele M, Ledda B, Grassi F, Mazzei M, Sala F (2004) Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci 167:725–731CrossRefGoogle Scholar
  19. 19.
    Lahaye R, Van der Bank M, Bogarin D et al (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928CrossRefPubMedGoogle Scholar
  20. 20.
    Lawrence RA (1997) Poisonous plants: when they are a threat to children. Pediatr Rev 18:162–168CrossRefPubMedGoogle Scholar
  21. 21.
    Li X, Ralphs MH, Gardner DR, Wang RRC (2002) Genetic variation within and among 22 accessions of three tall larkspur species (Delphinium spp.) based on RAPD markers. Biochem Syst Ecol 30:91–102CrossRefGoogle Scholar
  22. 22.
    Li M, Wunder J, Bissoli G, Scarponi E, Gazzani S, Barbaro E, Saedler H, Varotto C (2008) Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24:727–745CrossRefGoogle Scholar
  23. 23.
    Liu W, Chen XS, Liu GJ, Liang Q, He TM, Feng JR (2007) Interspecific hybridization of Prunus persica with P. armeniaca and P. salicina using embryo rescue. Plant Cell Tissue Organ Cult 88:289–299CrossRefGoogle Scholar
  24. 24.
    McIntire MS, Guest JR, Porterfield JF (1990) Philodendron—an infant death. J Toxicol Clin Toxicol 28:177–183CrossRefPubMedGoogle Scholar
  25. 25.
    Mrvos R, Krenzelok EP, Jacobsen TD (2001) Toxidromes associated with the most common plant ingestions. Vet Hum Toxicol 43:366–369PubMedGoogle Scholar
  26. 26.
    Newmaster SG, Ragupathy S (2009) Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol Ecol Resour 9:172–180CrossRefGoogle Scholar
  27. 27.
    Ngogang J, Nkongmeneck BA, Biyiti Bi Essam LF, Essame Oyono JL, Tsabang N, Zapfack L, Ngono Mballa R, Tamze V (2008) Evaluation of acute and sub acute toxicity of four medicinal plants extracts used in Cameroon. Toxicol Lett 180:S185–S186CrossRefGoogle Scholar
  28. 28.
    Savarese S, Andolfi A, Cimmino A et al (2009) Glycoalkaloids as biomarkers for recognition of cultivated, wild, and somatic hybrids of potato. Chem Biodiv 6:437–446CrossRefGoogle Scholar
  29. 29.
    Simonovik B, Ivancic A, Jakse J, Bohanec B (2007) Production and genetic evaluation of interspecific hybrids within the genus Sambucus. Plant Breed 126:628–633CrossRefGoogle Scholar
  30. 30.
    Starr JR, Naczi RFC, Chouinard BN (2009) Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Mol Ecol Resour 9:151–163CrossRefGoogle Scholar
  31. 31.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  32. 32.
    Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137:103–110CrossRefPubMedGoogle Scholar
  33. 33.
    Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, Gielly L, Cruaud C, Nascetti G, Wincker P, Swenson JE, Taberlet P (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 9:51–60CrossRefGoogle Scholar
  34. 34.
    Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36CrossRefPubMedGoogle Scholar
  35. 35.
    Walker R (2004) Criteria for risk assessment of botanical food supplements. Toxicol Lett 149:187–195CrossRefPubMedGoogle Scholar
  36. 36.
    Xia Q, Yan J, Chou MW, Fu PP (2008) Formation of DHP-derived DNA adducts from metabolic activation of the prototype heliotridine-type pyrrolizidine alkaloid, heliotrine. Toxicol Lett 178:77–82CrossRefPubMedGoogle Scholar
  37. 37.
    Zohary D, Hopf M (1993) Domestication of plants in the old world. Clarendon, Oxford, pp 143–150Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ilaria Bruni
    • 1
  • Fabrizio De Mattia
    • 1
  • Andrea Galimberti
    • 1
  • Gabriele Galasso
    • 2
  • Enrico Banfi
    • 2
  • Maurizio Casiraghi
    • 1
  • Massimo Labra
    • 1
  1. 1.ZooPlantLab, Dipartimento di Biotecnologie e BioscienzeUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Museo di Storia Naturale di MilanoMilanItaly

Personalised recommendations