Skip to main content

Advertisement

Log in

A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS)

International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Smoking during pregnancy has been identified as one of the major modifiable risk factors of sudden infant death syndrome (SIDS). It has been demonstrated that the risk of SIDS increases with increasing cigarette consumption. A variety of hypotheses have been proposed for explanation, including a genetic predisposition. The flavin-monooxygenase 3 (FMO3) is one of the enzymes metabolising nicotine, and several polymorphisms have already been described in this gene. Here, we studied variations in the exons and introns of the FMO3 gene by direct sequencing analysis and minisequencing in 159 SIDS cases and 170 controls. The three common variants G472A (E158K), G769A (V257M) and A923G (E308G) in the exons of the FMO3 gene were identified. The homozygote 472AA genotype occurred more frequently in SIDS cases than in controls (p = 0.0054) and was more frequent in those SIDS cases for which the mothers reported heavy smoking (p = 0.0084). This study is the first to demonstrate a gene–environment interaction in SIDS. The findings suggest that the common polymorphism G472A of FMO3 could act as an additional genetic SIDS risk factor in children whose mothers smoke. Parents who could pass on the 472A allele should be informed of the increased risk associated with smoking. Smoking mothers should be strongly advised to give up smoking during pregnancy and for at least the first year of the child’s life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Vennemann MT, Findeisen M, Bajanowski T, Butterfaß-Bahloul T, Jorch G, Brinkmann B et al (2005) Modifiable risk factors for SIDS in Germany, results of GeSID. Acta Paediatr 94:655–660

    Article  PubMed  Google Scholar 

  2. Carpenter RG, Irgens LM, Blair PS, England PD, Fleming P, Huber J et al (2004) Sudden unexplained infant death in 20 regions in Europe: case control study. Lancet 363:185–191

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell EA, Milerad J (2006) Smoking and sudden infant death syndrome. Rev Environ Health 21:81–103

    CAS  PubMed  Google Scholar 

  4. Schlaud M, Dreier M, Debertin AS, Jachau K, Heide S, Giebe B, Sperhake JP, Poets CF, Kleemann WJ (2010) The German case–control scene investigation study on SIDS: epidemiological approach and main results. Int J Legal Med 124:19–26. doi:10.1007/s00414-009-0317-z

    Article  PubMed  Google Scholar 

  5. Bajanowski T, Brinkmann B, Mitchell EA, Vennemann MM, Leukel HW, Larsch K-P, Beike J, GeSID group (2008) Nicotine and cotinine in infants dying from sudden infant death syndrome. Int J Legal Med 122:23–28

    Article  CAS  PubMed  Google Scholar 

  6. Fracasso T, Karger B, Vennemann M, Bajanowski T, Golla-Schindler UM, Pfeiffer H (2010) Amniotic fluid aspiration in cases of SIDS. Int J Legal Med. doi:10.1007/s00414-009-0384-1

    Google Scholar 

  7. Edston E, Perskvist N (2009) Histiocytoid cardiomyopathy and ventricular non-compaction in a case of sudden death in a female infant. Int J Legal Med 123:47–54

    Article  PubMed  Google Scholar 

  8. Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC et al (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 286:2264–2269

    Article  CAS  PubMed  Google Scholar 

  9. Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wülfing T, Siebrans C et al (2006) Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med 120:129–137

    Article  PubMed  Google Scholar 

  10. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM et al (2004) Sudden infant death syndrome: case–control frequency differences at genes pertinent to early autonomic nervous system embryologic development. Pediatr Res 56:391–395

    Article  CAS  PubMed  Google Scholar 

  11. Hunt CE (2005) Gene–environment interactions: implications for sudden unexpected deaths in infancy. Arch Dis Child 90:48–53

    Article  CAS  PubMed  Google Scholar 

  12. Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki S, Sata F, Katoh S, Saijo Y, Nakajima S, Washino N et al (2008) Adverse birth outcomes associated with maternal smoking and polymorphisms in the N-nitrosamine-metabolizing enzyme genes NQO1 and CYP2E1. Am J Epidemiol 167:719–726

    Article  PubMed  Google Scholar 

  14. Bartsch H, Nair U, Risch A, Rojas M, Wikman H, Alexandrov K (2000) Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev 9:3–28

    CAS  PubMed  Google Scholar 

  15. Rand CM, Weese-Mayer DE, Maher BS, Zhou L, Marazita ML, Berry-Kravis E (2006) Nicotine metabolizing genes GSTT1 and CYP1A1 in sudden infant death syndrome. Am J Med Genet 140A:1447–1452

    Article  CAS  Google Scholar 

  16. Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387

    Article  CAS  PubMed  Google Scholar 

  17. Hernandez D, Addou S, Lee D, Orengo C, Shephard EA, Phillips IR (2003) Trimethylaminuria and a human FMO3 mutation database. Hum Mutat 22:209–213

    Article  CAS  PubMed  Google Scholar 

  18. Cashman JR, Zhang J (2002) Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation. Drug Metab Dispos 30:1043–1052

    Article  CAS  PubMed  Google Scholar 

  19. Findeisen M, Vennemann M, Brinkmann B, Ortmann C, Röse I, Köpcke W et al (2004) German study on sudden infant death (GeSID): design, epidemiological and pathological profile. Int J Legal Med 118:163–169

    Article  CAS  PubMed  Google Scholar 

  20. Krous HF, Beckwith JB, Byard RW, Rognum TO, Bajanowski T, Corey T et al (2004) Sudden infant death syndrome (SIDS) and unclassified sudden infant deaths (USID): a definitional and diagnostic approach. Pediatrics 114:234–238

    Article  PubMed  Google Scholar 

  21. Koukouritaki SB, Poch MT, Cabacungan ET, MacCarver DG, Hines RN (2005) Discovery of novel flavin-containing monooxygenase 3 (FMO3) single nucleotide polymorphisms and functional analysis of upstream haplotype variants. Mol Pharmacol 68:383–392

    CAS  PubMed  Google Scholar 

  22. Pollack H, Lantz PM, Frohna JG (2000) Maternal smoking and adverse birth outcomes among singletons and twins. Am J Public Health 90:395–400

    Article  CAS  PubMed  Google Scholar 

  23. Franco P, Chabanski S, Szliwowski H, Dramaix M, Kahn A (2000) Influence of maternal smoking on autonomic nervous system in healthy infants. Pediatr Res 47:215–220

    Article  CAS  PubMed  Google Scholar 

  24. Ginzel KH, Maritz GS, Marks DF, Neuberger M, Pauly JR, Polito JR et al (2007) Critical review: nicotine for the fetus, the infant and the adolescent. J Health Psychol 12:215–224

    Article  CAS  PubMed  Google Scholar 

  25. Mahliere S, Perrin D, Peyronnet J, Boussouar A, Annat G, Viale JP et al (2008) Prenatal nicotine alters maturation of breathing and neural circuits regulating respiratory control. Respir Physiol Neurobiol 162:32–40

    Article  CAS  PubMed  Google Scholar 

  26. Johansson A, Ludvigsson J, Hermansson G (2008) Adverse health effects related to tobacco smoke exposure in a cohort of three-year olds. Acta Paediatr 97:354–357

    Article  PubMed  Google Scholar 

  27. Fleming PJ, Gilbert R, Azaz Y, Berry PJ, Rudd PT, Stewart A et al (1990) Interaction between bedding and sleeping position in the sudden infant death syndrome: a population based case control study. BMJ 301:85–89

    Article  CAS  PubMed  Google Scholar 

  28. Cashman JR, Akerman BR, Forrest SM, Treacy EP (2000) Population-specific polymorphisms of the human FMO3 gene: significance for detoxification. Drug Metab Dispos 28:169–173

    CAS  PubMed  Google Scholar 

  29. Cashman JR, Zhang J, Leushner J, Braun A (2001) Population distribution of human flavin-containing monooxygenase form 3: gene polymorphisms. Drug Metab Dispos 29:1629–1637

    CAS  PubMed  Google Scholar 

  30. Sachse C, Ruschen S, Dettling M, Schley J, Bauer S, Müller-Oerlinghausen B et al (1999) Flavin monooxygenase 3 (FMO3) polymorphism in a white population: allele frequencies, mutation linkage, and functional effects on clozapine and caffeine metabolism. Clin Pharmacol Ther 66:431–438

    Article  CAS  PubMed  Google Scholar 

  31. Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR (1997) Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 17:491–494

    Article  CAS  PubMed  Google Scholar 

  32. Koukouritaki SB, Hines RN (2005) Flavin-containing monooxygenase genetic polymorphism: impact on chemical metabolism and drug development. Pharmacogenomics 6:807–822

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from the IFORES programme run by the Essen University Hospital.

The study of Sudden Infant Death Syndrome was funded between 1998 and 2003 by the German Federal Ministry of Education and Science.

The members of the GeSID study group included: P. Bach, B. Brinkmann, B. Bockholt, M. Bohnert, U. Cremer, U. Deml, M. Findeisen, A. Freislederer, S. Heide, W. Huckenbeck, K. Jachau, G. Jorch, H-J. Kaatsch, A. Klein, W.J. Kleemann†, W. Köpcke, K.-P. Larsch, A. Fieguth, D. Fischer, W. Leukel, C. Ortmann, E. Rauch, W. Paulus, R. Penning, F. Rublack, C. Sauerland, M. Schlaud, B. Schmidt, J. Sperhake, G. Zimmer and R. Zweihoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Poetsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poetsch, M., Czerwinski, M., Wingenfeld, L. et al. A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS). Int J Legal Med 124, 301–306 (2010). https://doi.org/10.1007/s00414-010-0428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-010-0428-6

Keywords

Navigation