Fatal and severe codeine intoxication in 3-year-old twins—interpretation of drug and metabolite concentrations

  • Nerea Ferreirós
  • Sebastian Dresen
  • Maren Hermanns-Clausen
  • Volker Auwaerter
  • Annette Thierauf
  • Christoph Müller
  • Roland Hentschel
  • Rainer Trittler
  • Gisela Skopp
  • Wolfgang WeinmannEmail author
Original Article


This work presents two cases of codeine intoxication in 3-year-old monozygotic twin brothers while treated with a codeine slow-release formulation. One child had to be admitted to the hospital, whereas the other one died at home after aspiration of gastric content. The concentrations of codeine and major metabolites including morphine and corresponding glucuronide conjugates were measured by liquid chromatography–tandem mass spectrometry in serum, urine, cerebrospinal fluid, and brain tissue, respectively. A genetic polymorphism study was carried out in order to determine the ability of the children to metabolize codeine by O-demethylation. A pharmacokinetic calculation was also performed to estimate the administered dose of codeine in question. High concentrations of all substances were found in samples of both children. The pharmacokinetic estimate suggests an overdose of codeine, and the possible reasons for the high opiate concentrations are discussed. Furthermore, the postmortem distribution—during and after resuscitation—might play a major role in the interpretation of postmortem concentration levels.


Fatal codeine intoxication Dosing errors Extensive metabolizer Long-release medication 



The authors thank Dr. Andreas Pahl (Institute of Experimental and Clinical Pharmacology, Erlangen-Nuernberg, Germany) for performing the genotype study, and N. Ferreirós thanks the Basque Government for her postdoctoral grant.


  1. 1.
    Ellenhorn MJ, Barceloux DG (1988) Medical toxicology, diagnosis and treatment of human poisoning. Elsevier, New York, pp 698–709Google Scholar
  2. 2.
    Williams DG, Hatch DJ, Howard RF (2001) Codeine phosphate in paediatric medicine. Br J Anaesth 86:413–421PubMedCrossRefGoogle Scholar
  3. 3.
    American Academy of Pediatrics, Committee on Drugs (1997) Use of codeine- and dextromethorphan-containing cough remedies in children. Pediatrics 99:918–920CrossRefGoogle Scholar
  4. 4.
    Schaeffeler E, Schwab M, Eichelbaum M, Zanger UM (2003) CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-time PCR. Hum Mutat 22:476–485PubMedCrossRefGoogle Scholar
  5. 5.
    Toennes SW, Maurer HH (1997) Microsoft Excel in pharmacokinetics—an easy way to solve kinetic problems in clinical toxicology, legal medicine or doping control. In: Sachs H, Bernhard W, Jeger A (eds) Proceedings to 34th International TIAFT Meeting, Interlaken, 11–15 August 1996. Molina, Leipzig, pp 201–204Google Scholar
  6. 6.
    Williams DG, Patel A, Howard RF (2002) Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br J Anaesth 89:839–845PubMedCrossRefGoogle Scholar
  7. 7.
    The International Association of Forensic Toxicologists (2009) Reference blood level list of therapeutic and toxic substances.
  8. 8.
    Kintz P, Tracqui A, Mangin P (1991) Codeine concentrations in human samples in a case of fatal ingestion. Int J Legal Med 104:177–178PubMedCrossRefGoogle Scholar
  9. 9.
    Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lötsch J, Roots I, Bröckmöller J (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7:257–265PubMedCrossRefGoogle Scholar
  10. 10.
    Madlon-Kay DJ, Mosch FS (2000) Liquid medication dosing errors. J Fam Pract 49:741–744PubMedGoogle Scholar
  11. 11.
    Teske J, Weller JP, Larsch K, Tröger HD, Karst M (2007) Fatal outcome in a child after ingestion of a transdermal fentanyl patch. Int J Legal Med 121:147–151PubMedCrossRefGoogle Scholar
  12. 12.
    Bronstein AC, Spyker DA, Cantilena LR, Green J, Rumack BH, Heard SE (2007) 2006 Annual Report of the American Association of Poison Control Centers' National Poison Data System (NPDS). Clin Toxicol 45:815–917CrossRefGoogle Scholar
  13. 13.
    Loetsch J (2005) Pharmacokinetic–pharmacodynamic modeling of opioids. J Pain Symptom Manage 29:90–103CrossRefGoogle Scholar
  14. 14.
    Chen ZR, Somogyi AA, Bochner F (1988) Polymorphic O-demethylation of codeine. Lancet 2:914–915PubMedCrossRefGoogle Scholar
  15. 15.
    Marez D, Legrand M, Sabbagh N et al (1997) Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 7:193–202PubMedCrossRefGoogle Scholar
  16. 16.
    Coffman BL, Rios GR, King CD, Tephly TR (1997) Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 25:1–4PubMedGoogle Scholar
  17. 17.
    Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR (1998) Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos 26:507–512PubMedGoogle Scholar
  18. 18.
    Donnelly S, Davis MP, Walsh D, Naughton M (2002) Morphine in cancer pain management: a practical guide. Support Care Cancer 10:13–35PubMedCrossRefGoogle Scholar
  19. 19.
    Armstrong SC, Cozza KL (2003) Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I. Psychosomatics 44:167–171PubMedCrossRefGoogle Scholar
  20. 20.
    Penson RT, Joel JP, Bakhshi K, Clark SJ, Langford RM, Slevin ML (2000) Randomized placebo-controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther 68:667–676PubMedCrossRefGoogle Scholar
  21. 21.
    Loetsch J, Geisslinger G (2001) Morphine-6-glucuronide: an analgesic of the future? Clin Pharmacokinet 40:485–499CrossRefGoogle Scholar
  22. 22.
    Wahlstrom A, Lenhammar L, Ask B, Rane A (1994) Tricyclic antidepressants inhibit opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol Toxicol 75:23–27PubMedCrossRefGoogle Scholar
  23. 23.
    Takeda S, Ishii Y, Iwanaga M et al (2005) Modulation of UDP-glucuronosyltransferase function by cytochrome P450: evidence for the alteration of UGT2B7-catalyzed glucuronidation of morphine by CYP3A4. Mol Pharmacol 67:665–672PubMedCrossRefGoogle Scholar
  24. 24.
    Skopp G (2004) Preanalytic aspects in post-mortem toxicology. Forensic Sci Int 142:75–100PubMedCrossRefGoogle Scholar
  25. 25.
    Skopp G, Lutz R, Gansmann B, Mattern R, Aderjan R (1996) Postmortem distribution pattern of morphine and morphine glucuronides in heroin overdose. Int J Legal Med 109:118–124PubMedCrossRefGoogle Scholar
  26. 26.
    Wildfeuer A, Pfaff G, Lach P (1994) Biopharmazeutische Eigenschaften von retardiertem Codeinphosphat. Arzneim-Forsch/Drug Res 44:758–761Google Scholar
  27. 27.
    Aderjan RE, Skopp G (1998) Formation and clearance of active and inactive metabolites of opiates in humans. Ther Drug Monit 20:561–569PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nerea Ferreirós
    • 1
  • Sebastian Dresen
    • 1
  • Maren Hermanns-Clausen
    • 2
  • Volker Auwaerter
    • 1
  • Annette Thierauf
    • 1
  • Christoph Müller
    • 3
  • Roland Hentschel
    • 3
  • Rainer Trittler
    • 4
  • Gisela Skopp
    • 5
  • Wolfgang Weinmann
    • 1
    • 6
    Email author
  1. 1.Institute of Forensic MedicineFreiburg University Medical CenterFreiburgGermany
  2. 2.Poisons Information Center VIZ-FreiburgCenter for Pediatrics and Adolescent MedicineFreiburgGermany
  3. 3.Center for Pediatrics and Adolescent MedicineFreiburg University Medical CenterFreiburgGermany
  4. 4.Pharmacy of Freiburg University Medical CenterFreiburgGermany
  5. 5.Institute of Legal and Traffic MedicineUniversity HospitalHeidelbergGermany
  6. 6.Institute of Forensic Medicine, Forensic ToxicologyUniversity HospitalFreiburgGermany

Personalised recommendations