Skip to main content

Advertisement

Log in

How reliable are the risk estimates for X-ray examinations in forensic age estimations? A safety update

  • Review Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Possible biological side effects of exposure to X-rays are stochastic effects such as carcinogenesis and genetic alterations. In recent years, a number of new studies have been published about the special cancer risk that children may suffer from diagnostic X-rays. Children and adolescents who constitute many of the probands in forensic age-estimation proceedings are considerably more sensitive to the carcinogenic risks of ionizing radiation than adults. Established doses for X-ray examinations in forensic age estimations vary from less than 0.1 μSv (left hand X-ray) up to more than 800 μSv (computed tomography). Computed tomography in children, as a relatively high-dose procedure, is of particular interest because the doses involved are near to the lower limit of the doses observed and analyzed in A-bombing survivor studies. From these studies, direct epidemiological data exist concerning the lifetime cancer risk. Since there is no medical indication for forensic age examinations, it should be stressed that only safe methods are generally acceptable. This paper reviews current knowledge on cancer risks associated with diagnostic radiation and aims to help forensic experts, dentists, and pediatricians evaluate the risk from radiation when using X-rays in age-estimation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott P (2000) Are dental radiographs safe? Aust Dent J 45:208–213

    Article  PubMed  CAS  Google Scholar 

  2. Aebi MF, Aromaa K, Tavares T et al (2006) European Sourcebook of crime and criminal justical statistics. Third edition. WODC, Den Haag

  3. Alter BP (2002) Radiosensitivity in Fanconi’s anemia patients. Radiother Oncol 62:345–347

    Article  PubMed  Google Scholar 

  4. Bauchinger M, Dahm-Dalphi J, Dikomey E et al (2003) Strahlenphysik, Strahlenbiologie, Strahlenschutz. In: Freyschmidt J, Schmidt Th (eds) (Hrsg.) Handbuch diagnostische Radiologie. Springer, Berlin, Heidelberg, pp S 204–261

    Google Scholar 

  5. BEIR V. National Research Council. Committee on the biological effects of ionizing radiation (1990) Health effects of exposure to low levels of ionizing radiation. National Academy Press, Washington D.C.

    Google Scholar 

  6. BEIR VII Phase 2 Committee on the biological effects of ionizing radiation (2006) Health risks from exposure to low levels of ionizing radiation. National Academy Press, Washington D.C.

    Google Scholar 

  7. Berdon WE, Slovis TL (2002) Where we are since ALARA and the series of articles on CT dose in children and risk of long-term cancers: what has changed? Pediatr Radiol 32:699

    Article  PubMed  Google Scholar 

  8. Berrington de Gonzalez A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363:345–351

    Article  PubMed  Google Scholar 

  9. Boice JD Jr, Fraumeni JF (1980) Late effects following isoniazid therapy. Am J Public Health 70:987–989

    Article  PubMed  CAS  Google Scholar 

  10. Boice JD Jr, Miller RW (1992) Risk of breast cancer in ataxia-telangiectasia. N Engl J Med 326:1357–1358

    PubMed  Google Scholar 

  11. Boice JD Jr, Morin MM, Glass AG et al (1991) Diagnostic X-ray procedures and risk of leukemia, lymphoma, and multiple myeloma. JAMA 265:1290–1294

    Article  PubMed  Google Scholar 

  12. Boice JD Jr, Preston D, Davis FG, Monson RR (1991) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 125:214–222

    Article  PubMed  Google Scholar 

  13. Bottollier-Depois JF, Chau Q, Bouisset P, Kerlau G, Plawinski L, Lebaron-Jacobs L (2000) Assessing exposure to cosmic radiation during long-haul flights. Radiat Res 153:526–532

    Article  PubMed  CAS  Google Scholar 

  14. Bottollier-Depois JF, Chau Q, Bouisset P et al (2003) Assessing exposure to cosmic radiation on board aircraft. Adv Space Res 32:59–66

    Article  PubMed  CAS  Google Scholar 

  15. Bottollier-Depois JF, Trompier F, Clairand I et al (2004) Exposure of aircraft crew to cosmic radiation: on-board intercomparison of various dosemeters. Radiat Prot Dosimetry 110:411–415

    Article  PubMed  CAS  Google Scholar 

  16. Breckow J (2006) Linear-no-threshold is a radiation-protection standard rather than a mechanistic effect model. Radiat Environ Biophys 44:257–260

    Article  PubMed  Google Scholar 

  17. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR 176:289–296

    PubMed  CAS  Google Scholar 

  18. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32:228–233

    Article  PubMed  Google Scholar 

  19. Brenner DJ, Doll R, Goodhead DT et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100:13761–13766

    Article  PubMed  CAS  Google Scholar 

  20. Brenner DJ, Hall EJ (2004) Risk of cancer from diagnostic X-rays. Lancet 363:2192–2193

    Article  PubMed  Google Scholar 

  21. Brenner DJ, Sachs RK (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat Environ Biophys 44:253–256

    Article  PubMed  Google Scholar 

  22. Charles MW (2006) LNT—an apparent rather than a real controversy? J Radiol Prot 26:325–329

    Article  PubMed  CAS  Google Scholar 

  23. Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227

    PubMed  CAS  Google Scholar 

  24. Fearon T, Vucich J (1987) Normalized pediatric organ-absorbed doses from CT examinations. AJR 148:171–174

    PubMed  CAS  Google Scholar 

  25. Finestone A, Schlesinger T, Amir H, Richter E, Milgrom C (2003) Do physicians correctly estimate radiation risks from medical imaging? Arch Environ Health 58:59–61

    Article  PubMed  Google Scholar 

  26. Frederiksen NL, Benson BW, Sokolowski TW (1994) Effective dose and risk assessment from film tomography used for dental implant diagnostics. Dentomaxillofac Radiol 23:123–127

    PubMed  CAS  Google Scholar 

  27. Frederiksen NL, Benson BW, Sokolowski TW (1995) Effective dose and risk assessment from computed tomography of the maxillofacial complex. Dentomaxillofac Radiol 24:55–58

    PubMed  CAS  Google Scholar 

  28. Gibbs SJ (1982) Biological effects of radiation from dental radiography. Council on Dental Materials, Instruments, and Equipment. J Am Dent Assoc 105:275–281

    PubMed  CAS  Google Scholar 

  29. Hall EJ (2000) Radiation, the two-edged sword: cancer risks at high and low doses. Cancer J 6:343–350

    PubMed  CAS  Google Scholar 

  30. Hall EJ (2002) Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol 32:700–706

    Article  PubMed  Google Scholar 

  31. Hall EJ (2009) Radiation biology for pediatric radiologists. Pediatr Radiol 39(Suppl. 1):57–64

    Article  Google Scholar 

  32. Hall EJ, Brenner DJ (2008) Cancer risks from diagnostic radiology. Br J Radiol 81:362–378

    Article  PubMed  CAS  Google Scholar 

  33. Harrison JD, Streffer C (2007) The ICRP protection quantities, equivalent and effective dose: their basis and application. Radiat Prot Dosimetry 127:12–18

    Article  PubMed  CAS  Google Scholar 

  34. Huda W, Atherton JV, Ware DE, Cumming WA (1997) An approach for the estimation of effective radiation dose at CT in pediatric patients. Radiology 203:417–422

    PubMed  CAS  Google Scholar 

  35. ICRP (International Commission on Radiological Protection) (1991) Recommendations of the ICRP 1990. Ann ICRP Publication 60:1–3

    Google Scholar 

  36. ICRP (International Commission on Radiological Protection) (2007) Recommendations of the ICRP 2007. Ann ICRP Publication 37:2–4

    Google Scholar 

  37. Jung H (2000) Strahlenrisiken durch Röntgenuntersuchungen zur Altersschätzung im Strafverfahren. Rofo 172:553–556

    PubMed  CAS  Google Scholar 

  38. Jurik AG, Jensen LC, Hansen J (1996) Radiation dose by spiral CT and conventional tomography of the sternoclavicular joints and the manubrium sterni. Skeletal Radiol 25:467–470

    Article  PubMed  CAS  Google Scholar 

  39. Kalra MK, Maher MM, Rizzo S, Saini S (2004) Radiation exposure and projected risks with multidetector-row computed tomography scanning: clinical strategies and technologic developments for dose reduction. J Comput Assist Tomogr 28(Suppl 1):S46–S49

    Article  PubMed  Google Scholar 

  40. Kalra MK, Maher MM, Sahani DV et al (2003) Low-dose CT of the abdomen: evaluation of image improvement with use of noise reduction filters pilot study. Radiology 228:251–256

    Article  PubMed  Google Scholar 

  41. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  PubMed  Google Scholar 

  42. Kalra MK, Prasad S, Saini S et al (2002) Clinical comparison of standard-dose and 50% reduced-dose abdominal CT: effect on image quality. AJR 179:1101–1106

    PubMed  Google Scholar 

  43. Kalra MK, Wittram C, Maher MM et al (2003) Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology 228:257–264

    Article  PubMed  Google Scholar 

  44. Kellerer AM (2000) Risk estimates for radiation-induced cancer—the epidemiological evidence. Radiat Environ Biophys 39:17–24

    Article  PubMed  CAS  Google Scholar 

  45. Keske U, Hierholzer J, Neumann K et al (1995) Zur Altersschätzung der Patientendosis bei radiologischen Untersuchungen. Radiologe 35:162–170

    PubMed  CAS  Google Scholar 

  46. Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 14):121–125

    Article  PubMed  Google Scholar 

  47. Koller F, Roth J (2007) Die Bestimmung der effektiven Dosen bei CT-Untersuchungen und deren Beeinflussung durch Einstellparameter. Rofo 179:38–45

    PubMed  CAS  Google Scholar 

  48. Konietzko N, Jung H, Hering KG, Schmidt T (2001) Risk of radiation exposure in X-ray examination of the thorax. German Central Committee for the Control of Tuberculosis (DZK). Pneumologie 55:57–71

    Article  PubMed  CAS  Google Scholar 

  49. Lantos P, Fuller N, Bottollier-Depois JF (2003) Methods for estimating radiation doses received by commercial aircrew. Aviat Space Environ Med 74:746–752

    PubMed  Google Scholar 

  50. Liversidge HM, Chaillet N, Mornstad H et al (2006) Timing of Demirjian’s tooth formation stages. Ann Hum Biol 33:454–470

    Article  PubMed  CAS  Google Scholar 

  51. Ludlow JB, vies-Ludlow LE, White SC (2008) Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J Am Dent Assoc 139:1237–1243

    PubMed  Google Scholar 

  52. Maher MM, Kalra MK, Toth TL et al (2004) Application of rational practice and technical advances for optimizing radiation dose for chest CT. J Thorac Imaging 19:16–23

    Article  PubMed  Google Scholar 

  53. Martin CJ (2005) The LNT model provides the best approach for practical implementation of radiation protection. Br J Radiol 78:14–16

    Article  PubMed  CAS  Google Scholar 

  54. Meijerman L, Maat GJ, Schulz R, Schmeling A (2007) Variables affecting the probability of complete fusion of the medial clavicular epiphysis. Int J Legal Med 121:463–468

    Article  PubMed  Google Scholar 

  55. Milner GR, Levick RK, Kay R (1986) Assessment of bone age: a comparison of the Greulich and Pyle, and the Tanner and Whitehouse methods. Clin Radiol 37:119–121

    Article  PubMed  CAS  Google Scholar 

  56. Mossman KL (1997) Radiation protection of radiosensitive populations. Health Phys 72:519–523

    PubMed  CAS  Google Scholar 

  57. Mossman KL (1998) The linear no-threshold debate: where do we go from here? Med Phys 25:279–284

    Article  PubMed  CAS  Google Scholar 

  58. Mossman KL, Hill LT (1982) Radiation risks in pregnancy. Obstet Gynecol 60:237–242

    PubMed  CAS  Google Scholar 

  59. Muhler M, Schulz R, Schmidt S et al (2006) The influence of slice thickness on assessment of clavicle ossification in forensic age diagnostic. Int J Legal Med 120:15–17

    Article  PubMed  Google Scholar 

  60. Nussbaum RH (1998) The linear no-threshold dose–effect relation: is it relevant to radiation protection regulation? Med Phys 25:291–299

    Article  PubMed  CAS  Google Scholar 

  61. Okkalides D, Fotakis M (1994) Patient effective dose resulting from radiographic examinations. Br J Radiol 67:564–572

    Article  PubMed  CAS  Google Scholar 

  62. Olze A, Reisinger W, Geserick G, Schmeling A (2006) Age estimation of unaccompanied minors. Part II. Dental aspects. Forensic Sci Int 159(Suppl 1):S65–S67

    Article  PubMed  Google Scholar 

  63. Olze A, Reisinger W, Geserick G, Schmeling A (2006) Age estimation of unaccompanied minors. Part II. Dental aspects. Forensic Sci Int 159(Suppl 1):S65–S67

    Article  PubMed  Google Scholar 

  64. Olze A, van Niekerk P, Schmeling A et al (2007) Comparative study on the effect of ethnicity on wisdom tooth eruption. Int J Legal Med 121:445–448

    Article  PubMed  CAS  Google Scholar 

  65. Paterson A, Frush DP (2007) Dose reduction in paediatric MDCT: general principles. Clin Radiol 62:507–517

    Article  PubMed  CAS  Google Scholar 

  66. Paterson A, Frush DP, Donnelly LF (2001) Helical CT of the body: are settings adjusted for pediatric patients? AJR 176:297–301

    PubMed  CAS  Google Scholar 

  67. Pierce DA, Preston DL (1996) Risks from low doses of radiation. Science 272:632–633

    Article  PubMed  CAS  Google Scholar 

  68. Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154:178–186

    Article  PubMed  CAS  Google Scholar 

  69. Preston RJ (2003) The LNT model is the best we can do-today. J Radiol Prot 23:263–268

    Article  PubMed  Google Scholar 

  70. Preston RJ (2008) Update on linear non-threshold dose–response model and implications for diagnostic radiology procedures. Health Phys 95:541–546

    Article  PubMed  CAS  Google Scholar 

  71. Reinhardt G, Zink P, Lippert HD (1985) Röntgenuntersuchungen am lebenden Menschen im Strafverfahren. Zur Frage der Zulässigkeit nach RöV und StPO. Medizinrecht 3:155–157

    Google Scholar 

  72. Richardson DB, Wing S, Hoffmann W (2001) Cancer risk from low-level ionizing radiation: the role of age at exposure. Occup Med 16:191–218

    PubMed  CAS  Google Scholar 

  73. Ritz-Timme S, Cattaneo C, Borrman HI et al (2000) Age estimation: the state of the art in relation to the specific demands of forensic practice. Int J Legal Med 113:129–136

    Article  PubMed  CAS  Google Scholar 

  74. Rochedo ER, Lauria D (2008) International versus national regulations: concerns and trends. Appl Radiat Isot 66:1550–1553

    Article  PubMed  CAS  Google Scholar 

  75. Ron E (2002) Let’s not relive the past: a review of cancer risk after diagnostic or therapeutic irradiation. Pediatr Radiol 32(10):739–744

    Article  PubMed  Google Scholar 

  76. Schmeling A, Baumann U, Reisinger W et al (2006) Reference data for the Thiemann–Nitz method of assessing skeletal age for the purpose of forensic age estimation. Int J Legal Med 120(1):1–4

    Article  PubMed  Google Scholar 

  77. Schmeling A, Grundmann C, Geserick G et al (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460

    Article  PubMed  CAS  Google Scholar 

  78. Schmeling A, Olze A, Reisinger W, Geserick G (2004) Forensic age diagnostics of living people undergoing criminal proceedings. Forensic Sci Int 144(2–3):243–245

    Article  PubMed  CAS  Google Scholar 

  79. Schmeling A, Reisinger W, Wormanns D, Geserick G (2000) Strahlenexposition bei Röntgenuntersuchungen zur forensischen Altersschätzung Lebender. Rechtsmedizin 10:135–137

    Article  Google Scholar 

  80. Schmeling A, Schulz R, Danner B, Rosing FW (2006) The impact of economic progress and modernization in medicine on the ossification of hand and wrist. Int J Legal Med 120:121–126

    Article  PubMed  Google Scholar 

  81. Schmeling A, Schulz R, Reisinger W et al (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8

    Article  PubMed  Google Scholar 

  82. Schmidt S, Koch B, Schmeling A et al (2007) Comparative analysis of the applicability of the skeletal age determination methods of Greulich–Pyle and Thiemann–Nitz for forensic age estimation in living subjects. Int J Legal Med 121:293–296

    Article  PubMed  Google Scholar 

  83. Schulze D, Rother U, Heiland M et al (2006) Correlation of age and ossification of the medial clavicular epiphysis using computed tomography. Forensic Sci Int 158(2–3):184–189

    Article  PubMed  Google Scholar 

  84. Scott BR (2008) It’s time for a new low-dose-radiation risk assessment paradigm—one that acknowledges hormesis. Dose Response 6:333–351

    Article  PubMed  Google Scholar 

  85. SSK (Strahlenschutzkommission) (2006) Bildgebende Diagnostik beim Kind. Strahlenschutz, Rechtfertigung und Effektivität. Empfehlungen der Strahlenschutzkommission. BAnz. Nr. 96, Bonn

  86. Statistisches Bundesamt (Hrsg.) (2004) Todesursachen in Deutschland 2003. Sterbefälle nach ausgewählten Todesursachen, Altersgruppen und Geschlecht. Fachserie 12, Reihe 4.Wiesbaden

  87. UNSCEAR (United Nations Scientific committee on the effects of ionizing radiation) (2000) UNSCEAR Report Vol. 1. Sources and effects of ionizing radiation. Report to the general assembly with scientific annexes. UN Publication E.08.IX.06: 309–314

  88. Vallario EJ (1988) Regulatory perceptions of the future: a view from the United States. Health Phys 55:385–389

    Article  PubMed  CAS  Google Scholar 

  89. Vock P (2002) CT radiation exposure in children: consequences of the American discussion for Europe. Radiologe 42:697–702

    Article  PubMed  CAS  Google Scholar 

  90. Wall BF, Kendall GM, Edwards AA, Bouffler S, Muirhead CR, Meara JR (2006) What are the risks from medical X-rays and other low dose radiation? Br J Radiol 79:285–294

    Article  PubMed  CAS  Google Scholar 

  91. Wrixon AD (2008) New ICRP recommendations. J Radiol Prot 28:161–168

    Article  PubMed  CAS  Google Scholar 

  92. Zietz H, Berrak S, Ried H, Weber K, Maor M, Jaffe N (2001) The clavicle: a vulnerable bone in pediatric oncology. Int J Oncol 18:689–695

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ramsthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsthaler, F., Proschek, P., Betz, W. et al. How reliable are the risk estimates for X-ray examinations in forensic age estimations? A safety update. Int J Legal Med 123, 199–204 (2009). https://doi.org/10.1007/s00414-009-0322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-009-0322-2

Keywords

Navigation