Skip to main content

Advertisement

Log in

Virtopsy—noninvasive detection of occult bone lesions in postmortem MRI: additional information for traffic accident reconstruction

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In traffic accidents with pedestrians, cyclists or motorcyclists, patterned impact injuries as well as marks on clothes can be matched to the injury-causing vehicle structure in order to reconstruct the accident and identify the vehicle which has hit the person. Therefore, the differentiation of the primary impact injuries from other injuries is of great importance. Impact injuries can be identified on the external injuries of the skin, the injured subcutaneous and fat tissue, as well as the fractured bones. Another sign of impact is a bone bruise. The bone bruise, or occult bone lesion, means a bleeding in the subcortical bone marrow, which is presumed to be the result of micro-fractures of the medullar trabeculae. The aim of this study was to prove that bleeding in the subcortical bone marrow of the deceased can be detected using the postmortem noninvasive magnetic resonance imaging. This is demonstrated in five accident cases, four involving pedestrians and one a cyclist, where bone bruises were detected in different bones as a sign of impact occurring in the same location as the external and soft tissue impact injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brogdon B (1998) Forensic radiology. CRC, Boca Raton

    Google Scholar 

  2. Thali MJ, Yen K, Schweitzer W et al (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)—a feasibility study. J Forensic Sci 48:386–403

    PubMed  Google Scholar 

  3. Subke J, Wehner HD, Wehner F, Szczepaniak S (2000) Streifenlichttopometrie (SLT): a new method for the three-dimensional photoralistic forensic documentation in colour. Forensic Sci Int 113:289–295

    Article  PubMed  CAS  Google Scholar 

  4. Thali MJ, Braun M, Dirnhofer R (2003) Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries. Forensic Sci Int 137:203–208

    Article  PubMed  Google Scholar 

  5. Thali MJ, Braun M, Buck U et al (2005) Virtopsy—scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning. J Forensic Sci 50:428–424

    Article  PubMed  Google Scholar 

  6. Metter D (1983) Rechtsmedizinische Unfallrekonstruktion von tödlichen Fussgänger-PKW-Unfällen. Z Rechtsmed 91:21–23

    Article  PubMed  CAS  Google Scholar 

  7. Buck U, Naether S, Braun M et al (2007) Application of 3D documentation and geometric reconstruction methods in traffic accident analysis: With high resolution surface scanning, radiological MSCT/MRI scanning and real data based animation. Forensic Sci Int 170:20–28

    Article  PubMed  Google Scholar 

  8. Messerer O (1885) Über die gerichtlich-mediznische Bedeutung verschiedener Knochenbruchformen. Friedrich’s Blätter für gerichtliche Medizin und Sanitätspolizei 36:81–104

    Google Scholar 

  9. Patschneider H (1963) Über Anprallverletzungen der unteren Gliedmassen bei Strasenverkehrsunfällen. Deutsche Zeitschrift für gerichtliche Medizin 54:336–366

    Article  Google Scholar 

  10. Sellier K (1965) Zur Mechanik des Knochenbruchs. Deutsche Zeitschrift für gerichtliche Medizin 56:341–348

    Article  CAS  Google Scholar 

  11. Mittmeyer HJ, König HG, Springer E, Staak M (1974) Die Unterschenkelfraktur verunglückter Fussgänger-Möglichkeiten und Grenzen der Unfallrekonstruktion. Z Rechtsmed 75:163–170

    Article  PubMed  CAS  Google Scholar 

  12. Boks SS, Vroegindeweij D, Koes BW, Hunink MGM, Bierma-Zeinstra SMA (2006) Follow-up of occult bone lesions detected at MR imaging: systematic review. Radiology 238:853–862

    Article  PubMed  Google Scholar 

  13. Lisowski Z, Marek Z (1982) Hyperpigmentation in the long bones of the lower limbs as a basis for vehicle identification and traffic accident reconstruction. Forensic Sci Int 20:251–255

    Article  PubMed  CAS  Google Scholar 

  14. Lisowski Z, Baran E, Marek Z (1981) Traumadiagnostik durch Untersuchung ungebrochener Knochen. Arch F Kriminol 167:110–116

    CAS  Google Scholar 

  15. Jackowski C, Wyss M, Persson A, Classens M, Thali MJ, Lussi A (2008) Ultra-high-resolution dual-source CT for forensic dental visualization—discrimination of ceramic and composite fillings. Int J Legal Med 122:301–307

    Article  PubMed  CAS  Google Scholar 

  16. Dedouit F, Telmon N, Costagliola R, Otal P, Florence LL, Joffre F, Rougé D (2007) New identification possibilities with post-mortem multislice computed tomography. Int J Legal Med 121:507–510

    Article  PubMed  Google Scholar 

  17. Yen K, Vock P, Christe A et al (2007) Clinical forensic radiology in strangulation victims: forensic expertise based on magnetic resonance imaging (MRI) findings. Int J Legal Med 121:115–123

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Urs Koenigsdorfer and Roland Dorn for their help during the forensic examinations and Suzanne Horlacher, Elke Spielvogel, Karin Zwygart, Christoph Laeser and Carolina Dobrowolska (Department of Diagnostic Radiology and Neuroradiology, University of Bern) for the excellent help and data acquisition during the radiological examination. Many thanks also to Lowri Jones for her great support with linguistic knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Buck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, U., Christe, A., Naether, S. et al. Virtopsy—noninvasive detection of occult bone lesions in postmortem MRI: additional information for traffic accident reconstruction. Int J Legal Med 123, 221–226 (2009). https://doi.org/10.1007/s00414-008-0296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-008-0296-5

Keywords

Navigation