Skip to main content
Log in

DXS6797 contains two STRs which can be easily haplotyped in both sexes

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

DXS6797 is a complex X-chromosomal locus which contains two variable short tandem repeats (STRs) (motif ATCT) separated by 128 non-polymorphic nucleotides. The two STRs can be cleaved apart by Taq I digestion. Conventionally, DXS6797 is typed by measuring the overall amplicon length, providing only eight alleles [polymorphism information content (PIC) 0.733, mean exclusion chance (MEC) 0.712]. Separate amplification would increase the discrimination but obscure the haplotype constellation in females. Therefore, we proceed by amplifying the whole sequence containing both repeats (DXS6797 I and DXS6797 II) using a Fam-labelled forward primer and a Tamra-labelled reverse primer. We then measure the length of the entire double-labelled amplicon and a Taq-I-digested aliquot to infer, for both males and females, compound haplotypes consisting of DXS6797 I and DXS6797 II repeat length. This procedure has the potential to provide 42 DXS6797 haplotypes. If the crossover rate between both STRs is assumed to be <1.5×10−6, DXS6797 haplotypes could be used for kinship testing like STR alleles. In our German sample (780 X chromosomes), we determined 27 haplotypes (PIC 0.842, MEC 0,834) and in 220 meioses, we found no new mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bär W, Brinkmann B, Budowle B et al (1997) DNA Commission of the ISFH DNA recommendations—further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. Int J Leg Med 110:175–176

    Article  Google Scholar 

  2. Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Article  PubMed  CAS  Google Scholar 

  3. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48:137–144

    PubMed  CAS  Google Scholar 

  4. Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–413

    Article  Google Scholar 

  5. Cui B, Zhang H, Lu Y, Zhong W, Pei G, Kong X, Hu L (2004) Refinement of the locus for non-syndromic sensorineural deafness (DFN2). J Genet 83:35–38

    Article  PubMed  CAS  Google Scholar 

  6. Desmarais D, Zhong Y, Chakraborty R, Perreault C, Busque L (1998) Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene (HUMARA). J Forensic Sci 43:1046–1049

    PubMed  CAS  Google Scholar 

  7. Edelmann J, Hering S, Kuhlisch E, Szibor R (2002) Validation of the STR DXS7424 and the linkage situation on the X-chromosome. Forensic Sci Int 125:217–222

    Article  PubMed  CAS  Google Scholar 

  8. Kishida T, Tamaki Y (1997) Japanese population data on X-chromosomal STR locus AR. Jpn J Leg Med 51:376–379

    CAS  Google Scholar 

  9. Krüger J, Fuhrmann W, Lichte KH, Steffens C (1968) Zur Verwendung der sauren Erythrocytenphosphatase bei der Vaterschaftsbegutachtung. Dtsch Z Gesamte Gerichtl Med 64:127–146

    Article  PubMed  Google Scholar 

  10. Lee HY, Park MJ, Jeong CK, Lee SY, Yoo JE, Chung U, Choi JH, Kim CY, Shin KJ (2004) Genetic characteristics and population study of 4 X-chromosomal STRs in Koreans: evidence for a null allele at DXS9898. Int J Leg Med 118:355–360

    Article  Google Scholar 

  11. Nagaraja R, MacMillan S, Jones C, Masisi M, Pengue G, Porta G, Miao S, Casamassimi A, D'Urso M, Brownstein B, Schlessinger D (1998) Integrated YAC/STS physical and genetic map of 22.5 Mb of human Xq24-q26 at 56-kb inter-STS resolution. Genomics 52:247–266

    Article  PubMed  CAS  Google Scholar 

  12. Shin SH, Yu JS, Park SW, Min GS, Chung KW (2005) Genetic analysis of 18 X-linked short tandem repeat markers in Korean population. Forensic Sci Int 147:35–41

    Article  PubMed  CAS  Google Scholar 

  13. Szibor R, Plate I, Krause D (1996) Heteroduplex analysis is a rapid method for detection of suballeles caused by mixed length and sequence variability in STR systems. In: Carracedo A, Brinkmann B, Bär W (eds) Advances in forensic haemogenetics 6. Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Szibor R, Edelmann J, Hering S, Plate I, Wittig H, Roewer L, Wiegand P, Cali F, Romano V, Michael M (2003) Cell line DNA typing in forensic genetics—the necessity of reliable standards. Forensic Sci Int 138:37–43

    Article  PubMed  CAS  Google Scholar 

  15. Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Krause D (2003) Use of X-linked markers for forensic purposes. Int J Leg Med 117:67–74

    CAS  Google Scholar 

  16. Ying BW, Shi MS, Deng JQ et al (2003) Chinese population data on DXS6797 and GATA144D04 loci. J Forensic Sci 48:1184

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Szibor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poetsch, M., Repenning, A., Lignitz, E. et al. DXS6797 contains two STRs which can be easily haplotyped in both sexes. Int J Legal Med 120, 61–66 (2006). https://doi.org/10.1007/s00414-005-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-005-0003-8

Keywords

Navigation