Skip to main content
Log in

A proposed nomenclature for 15 canine-specific polymorphic STR loci for forensic purposes

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We performed a population study on 15 polymorphic STR loci (FH2010, FH2079, PEZ2, VWF.X, FH2054, FH2087Ub, FH2611, WILMS-TF, PEZ12, PEZ15, PEZ6, FH2087Ua, ZUBECA4, ZUBECA6, FH2132) on 131 randomly selected dogs. Alleles were identified and grouped according to their estimated fragment length using fixed allelic bins encompassing one base-pair. The allele assignment was confirmed by sequence analysis of homozygote and cloned heterozygote alleles. In order to develop a uniform repeat-based nomenclature, extensive sequence analysis was performed on a selection of alleles from each STR locus. The proposed nomenclature refers to the internationally recognised recommendations for human-specific STR loci in forensic applications. The 15 canine-specific STR loci were grouped into 3 classes (simple STRs, compound STRs and complex/hypervariable STRs) according to their complexity and variability within the repeat structure. Finally, we evaluated the precision of fragment size estimation on a capillary electrophoresis platform and demonstrated reproducibility of fragment length estimation for single base-pair intermediate alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wayne RK (1993) Molecular evolution of the dog family. Trends Genet 9:218–224

    Google Scholar 

  2. Flagstad O, Walker CW, Vila C et al. (2003) Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline. Mol Ecol 12:869–880

    CAS  PubMed  Google Scholar 

  3. Vila C, Savolainen P, Maldonado JE et al. (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689

    PubMed  Google Scholar 

  4. Vila C, Maldonado JE, Wayne RK (1999) Phylogenetic relationships, evolution, and genetic diversity of the domestic dog. J Hered 90:71–77

    PubMed  Google Scholar 

  5. Vila C, Walker C, Sundqvist AK et al. (2003) Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf-dog hybrids. Heredity 90:17–24

    Article  PubMed  Google Scholar 

  6. Wayne RK, Ostrander EA (1999) Origin, genetic diversity, and genome structure of the domestic dog. Bioessays 21:247–257

    Article  CAS  PubMed  Google Scholar 

  7. De Munnynck K, Van de Voorde W (2002) Forensic approach of fatal dog attacks: a case report and literature review. Int J Legal Med 116:295–300

    PubMed  Google Scholar 

  8. Muller S, Flekna G, Muller M, Brem G (1999) Use of canine microsatellite polymorphisms in forensic examinations. J Hered 90:55–56

    PubMed  Google Scholar 

  9. Padar Z, Egyed B, Kontadakis K, Furedi S, Woller J, Zoldag L, Fekete S (2002) Canine STR analyses in forensic practice. Observation of a possible mutation in a dog hair. Int J Legal Med 116:286–288

    CAS  PubMed  Google Scholar 

  10. Shutler GG, Gagnon P, Verret G, Kalyn H, Korkosh S, Johnston E, Halverson J (1999) Removal of a PCR inhibitor and resolution of DNA STR types in mixed human-canine stains from a five year old case. J Forensic Sci 44:623–626

    CAS  PubMed  Google Scholar 

  11. Savolainen P, Rosen B, Holmberg A, Leitner T, Uhlen M, Lundeberg J (1997) Sequence analysis of domestic dog mitochondrial DNA for forensic use. J Forensic Sci 42:593–600

    CAS  PubMed  Google Scholar 

  12. Schneider PM, Seo Y, Rittner C (1999) Forensic mtDNA hair analysis excludes a dog from having caused a traffic accident. Int J Legal Med 112:315–316

    CAS  PubMed  Google Scholar 

  13. Ichikawa Y, Takagi K, Tsumagari S et al. (2001) Canine parentage testing based on microsatellite polymorphisms. J Vet Med Sci 63:1209–1213

    Article  CAS  PubMed  Google Scholar 

  14. Padar Z, Angyal M, Egyed B, Furedi S, Woller J, Zoldag L, Fekete S (2001) Canine microsatellite polymorphisms as the resolution of an illegal animal death case in a Hungarian zoological gardens. Int J Legal Med 115:79–81

    CAS  PubMed  Google Scholar 

  15. Padar Z, Egyed B, Kontadakis K, Zoldag L, Fekete S (2001) Resolution of parentage in dogs by examination of microsatellites after death of putative sire: case report. Acta Vet Hung 49:269–273

    CAS  PubMed  Google Scholar 

  16. Zajc I, Sampson J (1996) DNA microsatellites in domesticated dogs: application in paternity disputes. Pflugers Arch 431:R201–202

    CAS  PubMed  Google Scholar 

  17. Zajc I, Mellersh C, Kelly EP, Sampson J (1994) A new method of paternity testing for dogs, based on microsatellite sequences. Vet Rec 135:545–547

    CAS  PubMed  Google Scholar 

  18. Zajc I, Sampson J (1999) Utility of canine microsatellites in revealing the relationships of pure bred dogs. J Hered 90:104–107

    Article  CAS  PubMed  Google Scholar 

  19. Bär W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, Mayr W, Olaisen B (1997) DNA recommendations. Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. International Society for Forensic Haemogenetics. Int J Legal Med 110:175–176

    PubMed  Google Scholar 

  20. Gill P, Kimpton C, d’Aloja E et al. (1994) Report of the European DNA profiling group (EDNAP)—towards standardisation of short tandem repeat (STR) loci. Forensic Sci Int 65:51–59

    CAS  PubMed  Google Scholar 

  21. Gill P, Brinkmann B, d’Aloja E et al. (1997) Considerations from the European DNA profiling group (EDNAP) concerning STR nomenclature. Forensic Sci Int 87:185–192

    Google Scholar 

  22. Gill P, Brenner C, Brinkmann B et al. (2001) DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome STRs. Int J Legal Med 114:305–309

    CAS  PubMed  Google Scholar 

  23. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  24. Dolf G, Schlapfer J, Switonski M, Stranzinger G, Gaillard C, Schelling C (1998) The highly polymorphic canine microsatellite ZuBeCa4 is localized on canine chromosome 3q15-q18. Anim Genet 29:403–404

    CAS  PubMed  Google Scholar 

  25. Dolf G, Schelling C, Stahlberger-Saitbekova N, Fu B, Schlapfer J, Yang F (2000) Seven cosmid-derived canine microsatellites. Anim Genet 31:411–412

    Article  CAS  PubMed  Google Scholar 

  26. Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362

    Google Scholar 

  27. Holmes NG, Dickens HF, Parker HL, Binns MM, Mellersh CS, Sampson J (1995) Eighteen canine microsatellites. Anim Genet 26:132–133

    CAS  Google Scholar 

  28. Holmes NG, Dickens HF, Neff MW, Mee JM, Sampson I, Binns MM (1998) Nine canine microsatellites. Anim Genet 29:477

    CAS  PubMed  Google Scholar 

  29. Jonasdottir TJ, Dolf G, Sletten M et al. (1999) Five new linkage groups in the canine linkage map. Anim Genet 30:366–370

    Article  CAS  PubMed  Google Scholar 

  30. Ladon D, Schelling C, Dolf G, Switonski M, Schlapfer J (1998) The highly polymorphic canine microsatellite ZuBeCa6 is localized on canine chromosome 5q12-q13. Anim Genet 29:466–467

    CAS  PubMed  Google Scholar 

  31. Neff MW, Broman KW, Mellersh CS et al. (1999) A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics 151:803–820

    CAS  PubMed  Google Scholar 

  32. Ostrander EA, Sprague GF Jr, Rine J (1993) Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 16:207–213

    Article  CAS  PubMed  Google Scholar 

  33. Richman M, Mellersh CS, Andre C, Galibert F, Ostrander EA (2001) Characterization of a minimal screening set of 172 microsatellite markers for genome-wide screens of the canine genome. J Biochem Biophys Methods 47:137–149

    Article  CAS  PubMed  Google Scholar 

  34. Shibuya H, Collins BK, Huang TH, Johnson GS (1994) A polymorphic (AGGAAT)n tandem repeat in an intron of the canine von Willebrand factor gene. Anim Genet 25:122

    CAS  Google Scholar 

  35. Shibuya H, Collins BK, Collier LL, Huang TH, Nonneman D, Johnson GS (1996) A polymorphic (GAAA)n microsatellite in a canine Wilms tumor 1 (WT1) gene intron. Anim Genet 27:59–60

    CAS  Google Scholar 

  36. Tiret L, Kessler JL, Bentolila S, Faure S, Bach JM, Weissenbach J, Panthier JJ (2000) Assignation of highly polymorphic markers on a canine purebred pedigree. Mamm Genome 11:703–705

    Google Scholar 

  37. Butler J (2001) Forensic DNA typing: biology & technology behind STR markers. Academic Press, San Diego, pp 53–81

    Google Scholar 

  38. Sgueglia JB, Geiger S, Davis J (2003) Precision studies using the ABI prism 3100 genetic analyzer for forensic DNA analysis. Anal Bioanal Chem 376:1247–1254

    Article  CAS  PubMed  Google Scholar 

  39. Urquhart A, Kimpton CP, Downes TJ, Gill P (1994) Variation in short tandem repeat sequences—a survey of twelve microsatellite loci for use as forensic identification markers. Int J Legal Med 107:13–20

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mag. vet. med. Volker Büchele, Helena and Paul Scheithauer for bravely collecting the samples. Harald Niederstaetter is kindly acknowledged for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Parson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichmann, C., Berger, B. & Parson, W. A proposed nomenclature for 15 canine-specific polymorphic STR loci for forensic purposes. Int J Legal Med 118, 249–266 (2004). https://doi.org/10.1007/s00414-004-0452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-004-0452-5

Keywords

Navigation