Abstract
Chromosome gains or losses often lead to copy number variations (CNV) and loss of heterozygosity (LOH). Both quantities are low in hematologic “liquid” cancers versus solid tumors in data of The Cancer Genome Atlas (TCGA) that also shows the fraction of a genome affected by LOH is ~ one-half of that with CNV. Suspension cultures of p53-null THP-1 leukemia-derived cells conform to these trends, despite novel evidence here of genetic heterogeneity and transiently elevated CNV after perturbation. Single-cell DNAseq indeed reveals at least 8 distinct THP-1 aneuploid clones with further intra-clonal variation, suggesting ongoing genetic evolution. Importantly, acute inhibition of the mitotic spindle assembly checkpoint (SAC) produces CNV levels that are typical of high-CNV solid tumors, with subsequent cell death and down-selection to novel CNV. Pan-cancer analyses show p53 inactivation associates with aneuploidy, but leukemias exhibit a weaker trend even though p53 inactivation correlates with poor survival. Overexpression of p53 in THP-1 does not rescue established aneuploidy or LOH but slightly increases cell death under oxidative or confinement stress, and triggers p21, a key p53 target, but without affecting net growth. Our results suggest that factors other than p53 exert stronger pressures against aneuploidy in liquid cancers, and identifying such CNV suppressors could be useful across liquid and solid tumor types.
Similar content being viewed by others
Data Availability
All data generated or analyzed during this study are included in this published article. All materials generated are available from the corresponding author on reasonable request.
References
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 25(1):104–113. https://doi.org/10.1038/cdd.2017.169
Avery-Kiejda KA, Morten B, Wong-Brown MW, Mathe A, Scott RJ (2014) The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. Carcinogenesis 35(3):586–596. https://doi.org/10.1093/carcin/bgt411
Baslan T, Morris JPt, Zhao Z, Reyes J, Ho YJ, Tsanov KM, Bermeo J, Tian S, Zhang S, Askan G, Yavas A, Lecomte N, Erakky A, Varghese AM, Zhang A, Kendall J, Ghiban E, Chorbadjiev L, Wu J, ... Lowe SW (2022) Ordered and deterministic cancer genome evolution after p53 loss. Nature 608(7924):795-802. https://doi.org/10.1038/s41586-022-05082-5
Bejarano I, Espino J, Marchena AM, Barriga C, Paredes SD, Rodriguez AB, Pariente JA (2011) Melatonin enhances hydrogen peroxide-induced apoptosis in human promyelocytic leukaemia HL-60 cells. Mol Cell Biochem 353(1–2):167–176. https://doi.org/10.1007/s11010-011-0783-8
Ben-David U, Amon A (2020) Context is everything: aneuploidy in cancer. Nat Rev Genet 21(1):44–62. https://doi.org/10.1038/s41576-019-0171-x
Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, ... Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905. https://doi.org/10.1038/nature08822
Bolton H, Graham SJL, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, Voet T, Zernicka-Goetz M (2016) Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun 7:11165. https://doi.org/10.1038/ncomms11165
Bourdon JC, Khoury MP, Diot A, Baker L, Fernandes K, Aoubala M, Quinlan P, Purdie CA, Jordan LB, Prats AC, Lane DP, Thompson AM (2011) p53 mutant breast cancer patients expressing p53gamma have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res 13(1):R7. https://doi.org/10.1186/bcr2811
Buscemi G, Ricci C, Zannini L, Fontanella E, Plevani P, Delia D (2014) Bimodal regulation of p21(waf1) protein as function of DNA damage levels. Cell Cycle 13(18):2901–2912. https://doi.org/10.4161/15384101.2014.946852
Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014. https://doi.org/10.1126/science.1092734
Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153(3):517–527. https://doi.org/10.1083/jcb.153.3.517
Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, Elledge SJ (2013) Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155(4):948–962. https://doi.org/10.1016/j.cell.2013.10.011
Dudka D, Noatynska A, Smith CA, Liaudet N, McAinsh AD, Meraldi P (2018) Complete microtubule-kinetochore occupancy favours the segregation of merotelic attachments. Nat Commun 9(1):2042. https://doi.org/10.1038/s41467-018-04427-x
Duijf PH, Schultz N, Benezra R (2013) Cancer cells preferentially lose small chromosomes. Int J Cancer 132(10):2316–2326. https://doi.org/10.1002/ijc.27924
Emon B, Bauer J, Jain Y, Jung B, Saif T (2018) Biophysics of tumor microenvironment and cancer metastasis - a mini review. Comput Struct Biotechnol J 16:279–287. https://doi.org/10.1016/j.csbj.2018.07.003
Engeland K (2022) Cell cycle regulation: p53–p21-RB signaling. Cell Death Differ 29(5):946–960. https://doi.org/10.1038/s41418-022-00988-z
Fu X, Wu S, Li B, Xu Y, Liu J (2020) Functions of p53 in pluripotent stem cells. Protein Cell 11(1):71–78. https://doi.org/10.1007/s13238-019-00665-x
Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, Gannon HS, Hurhula B, Sharpe T, Goodale A, Fritchman B, Steelman S, Vazquez F, Tsherniak A, Aguirre AJ, ... Hahn WC (2018) Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 50(10):1381–1387. https://doi.org/10.1038/s41588-018-0204-y
Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38(6):675–678. https://doi.org/10.1038/s41587-020-0546-8
Gonzales F, Cheok MH (2018) Impact of CNA on AML prognosis. Oncotarget 9(16):12540–12541. https://doi.org/10.18632/oncotarget.23404
Hinchcliffe EH, Day CA, Karanjeet KB, Fadness S, Langfald A, Vaughan KT, Dong Z (2016) Chromosome missegregation during anaphase triggers p53 cell cycle arrest through histone H3.3 Ser31 phosphorylation. Nat Cell Biol 18(6):668–675. https://doi.org/10.1038/ncb3348
Ivanovska IL, Swift J, Spinler K, Dingal D, Cho S, Discher DE (2017) Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol Biol Cell 28(14):2010–2022. https://doi.org/10.1091/mbc.E17-01-0010
Joruiz SM, Bourdon JC (2016) p53 isoforms: key regulators of the cell fate decision. Cold Spring Harb Perspect Med 6(8). https://doi.org/10.1101/cshperspect.a026039
Kaiser M, Kuhnl A, Reins J, Fischer S, Ortiz-Tanchez J, Schlee C, Mochmann LH, Heesch S, Benlasfer O, Hofmann WK, Thiel E, Baldus CD (2011) Antileukemic activity of the HSP70 inhibitor pifithrin-mu in acute leukemia. Blood Cancer J 1(7):e28. https://doi.org/10.1038/bcj.2011.28
Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS, Liu Y, Akbani R, Feng B, Donehower LA, Miller C, Shen Y, Karimi M, Chen H, Kim P, ... Wang C (2018) Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep 23(1):239–254 e236. https://doi.org/10.1016/j.celrep.2018.03.076
Lane DP, Cheok CF, Lain S (2010) p53-based cancer therapy. Cold Spring Harb Perspect Biol 2(9):a001222. https://doi.org/10.1101/cshperspect.a001222
Lee SJ, Ahn H, Nam KW, Kim KH, Mar W (2012) Effects of rutaecarpine on hydrogen peroxide-induced apoptosis in murine hepa-1c1c7 cells. Biomol Ther (seoul) 20(5):487–491. https://doi.org/10.4062/biomolther.2012.20.5.487
Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6(5):443–450. https://doi.org/10.1038/ncb1123
Li F, Wang J, Liu A, Xin L, Zhong S, Hong Y, Chen Y (2019) Prolonged lumbosacral pain as the initial presentation in acute lymphoblastic leukemia in an adult: a case report. Medicine (Baltimore) 98(24):e15912. https://doi.org/10.1097/MD.0000000000015912
Li Z, Zhao J, Li Q, Yang W, Song Q, Li W, Liu J (2010) KLF4 promotes hydrogen-peroxide-induced apoptosis of chronic myeloid leukemia cells involving the bcl-2/bax pathway. Cell Stress Chaperones 15(6):905–912. https://doi.org/10.1007/s12192-010-0199-5
Liu X, Winey M (2012) The MPS1 family of protein kinases. Annu Rev Biochem 81:561–585. https://doi.org/10.1146/annurev-biochem-061611-090435
Lukow DA, Sausville EL, Suri P, Chunduri NK, Wieland A, Leu J, Smith JC, Girish V, Kumar AA, Kendall J, Wang Z, Storchova Z, Sheltzer JM (2021) Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev Cell 56(17):2427-2439 e2424. https://doi.org/10.1016/j.devcel.2021.07.009
Lundberg A, Yi JJJ, Lindstrom LS, Tobin NP (2022) Reclassifying tumour cell cycle activity in terms of its tissue of origin. NPJ Precis Oncol 6(1):59. https://doi.org/10.1038/s41698-022-00302-7
Mierke CT, Sauer F, Grosser S, Puder S, Fischer T, Kas JA (2018) The two faces of enhanced stroma: stroma acts as a tumor promoter and a steric obstacle. NMR Biomed 31(10):e3831. https://doi.org/10.1002/nbm.3831
Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590. https://doi.org/10.1016/s1097-2765(03)00050-9
Ponnapalli SP, Bradley MW, Devine K, Bowen J, Coppens SE, Leraas KM, Milash BA, Li F, Luo H, Qiu S, Wu K, Yang H, Wittwer CT, Palmer CA, Jensen RL, Gastier-Foster JM, Hanson HA, Barnholtz-Sloan JS, Alter O (2020) Retrospective clinical trial experimentally validates glioblastoma genome-wide pattern of DNA copy-number alterations predictor of survival. APL Bioeng 4(2):026106. https://doi.org/10.1063/1.5142559
Prokocimer M, Molchadsky A, Rotter V (2017) Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood 130(6):699–712. https://doi.org/10.1182/blood-2017-02-763086
Roy P, Reavey E, Rayne M, Roy S, Abed El Baky M, Ishii Y, Bartholomew C (2010) Enhanced sensitivity to hydrogen peroxide-induced apoptosis in Evi1 transformed Rat1 fibroblasts due to repression of carbonic anhydrase III. FEBS J 277(2):441–452. https://doi.org/10.1111/j.1742-4658.2009.07496.x
Santaguida S, Richardson A, Iyer DR, M’Saad O, Zasadil L, Knouse KA, Wong YL, Rhind N, Desai A, Amon A (2017) Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev Cell 41(6):638-651 e635. https://doi.org/10.1016/j.devcel.2017.05.022
Shah SB, Carlson CR, Lai K, Zhong Z, Marsico G, Lee KM, Félix Vélez NE, Abeles EB, Allam M, Hu T, Walter LD, Martin KE, Gandhi K, Butler SD, Puri R, McCleary-Wheeler AL, Tam W, Elemento O, Takata K, Steidl C, Scott DW, Fontan L, Ueno H, Cosgrove BD, Inghirami G, García AJ, Coskun AF, Koff JL, Melnick A, Singh A (2023) Combinatorial treatment rescues tumour-microenvironment-mediated attenuation of MALT1 inhibitors in B-cell lymphomas. Nat Mater 22:511–523. https://doi.org/10.1038/s41563-023-01495-3
Shi T, van Soest DMK, Polderman PE, Burgering BMT, Dansen TB (2021) DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol Med 172:298–311. https://doi.org/10.1016/j.freeradbiomed.2021.06.013
Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383. https://doi.org/10.1038/s41580-020-0230-3
Steele CD, Abbasi A, Islam SMA, Bowes AL, Khandekar A, Haase K, Hames-Fathi S, Ajayi D, Verfaillie A, Dhami P, McLatchie A, Lechner M, Light N, Shlien A, Malkin D, Feber A, Proszek P, Lesluyes T, Mertens F, ... Pillay N (2022) Signatures of copy number alterations in human cancer. Nature 606(7916):984–991. https://doi.org/10.1038/s41586-022-04738-6
Stucke VM, Sillje HH, Arnaud L, Nigg EA (2002) Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 21(7):1723–1732. https://doi.org/10.1093/emboj/21.7.1723
Sugimoto K, Toyoshima H, Sakai R, Miyagawa K, Hagiwara K, Ishikawa F, Takaku F, Yazaki Y, Hirai H (1992) Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood 79(9):2378–2383. https://www.ncbi.nlm.nih.gov/pubmed/1571549
Toufektchan E, Toledo F (2018) The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers (Basel) 10(5). https://doi.org/10.3390/cancers10050135
van Dijk E, van den Bosch T, Lenos KJ, El Makrini K, Nijman LE, van Essen HFB, Lansu N, Boekhout M, Hageman JH, Fitzgerald RC, Punt CJA, Tuynman JB, Snippert HJG, Kops G, Medema JP, Ylstra B, Vermeulen L, Miedema DM (2021) Chromosomal copy number heterogeneity predicts survival rates across cancers. Nat Commun 12(1):3188. https://doi.org/10.1038/s41467-021-23384-6
Wagenblast E, Araujo J, Gan OI, Cutting SK, Murison A, Krivdova G, Azkanaz M, McLeod JL, Smith SA, Gratton BA, Marhon SA, Gabra M, Medeiros JJF, Manteghi S, Chen J, Chan-Seng-Yue M, Garcia-Prat L, Salmena L, De Carvalho DD, ... Lechman ER (2021) Mapping the cellular origin and early evolution of leukemia in Down syndrome. Science, 373(6551). https://doi.org/10.1126/science.abf6202
Walles SA, Zhou R, Liliemark E (1996) DNA damage induced by etoposide; a comparison of two different methods for determination of strand breaks in DNA. Cancer Lett 105(2):153–159. https://doi.org/10.1016/0304-3835(96)04266-8
Wallis B, Bowman KR, Lu P, Lim CS (2023) The challenges and prospects of p53-based therapies in ovarian cancer. Biomolecules 13(1). https://doi.org/10.3390/biom13010159
Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11(1):25–36. https://doi.org/10.1016/j.ccr.2006.12.003
Wei B, Zhou X, Liang C, Zheng X, Lei P, Fang J, Han X, Wang L, Qi C, Wei H (2017) Human colorectal cancer progression correlates with LOX-induced ECM stiffening. Int J Biol Sci 13(11):1450–1457. https://doi.org/10.7150/ijbs.21230
Welch JS (2018) Patterns of mutations in TP53 mutated AML. Best Pract Res Clin Haematol 31(4):379–383. https://doi.org/10.1016/j.beha.2018.09.010
Wong SW, Lenzini S, Shin JW (2018) Perspective: biophysical regulation of cancerous and normal blood cell lineages in hematopoietic malignancies. APL Bioeng 2(3):031802. https://doi.org/10.1063/1.5025689
Xia Y, Ivanovska IL, Zhu K, Smith L, Irianto J, Pfeifer CR, Alvey CM, Ji J, Liu D, Cho S, Bennett RR, Liu AJ, Greenberg RA, Discher DE (2018) Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J Cell Biol 217(11):3796–3808. https://doi.org/10.1083/jcb.201711161
Xian S, Dosset M, Almanza G, Searles S, Sahani P, Waller TC, Jepsen K, Carter H, Zanetti M (2021) The unfolded protein response links tumor aneuploidy to local immune dysregulation. EMBO Rep 22(12):e52509. https://doi.org/10.15252/embr.202152509
Zhou L, Jilderda LJ, Foijer F (2020) Exploiting aneuploidy-imposed stresses and coping mechanisms to battle cancer. Open Biol 10(9):200148. https://doi.org/10.1098/rsob.200148
Acknowledgements
The authors acknowledge the following University of Pennsylvania core facilities: Cell Center Stockroom, the Penn Cytomics and Cell Sorting Resource Laboratory, and the Penn Genomic Analysis Core. We also acknowledge The Center for Applied Genomics Core in The Children’s Hospital of Philadelphia for SNPa's.
Funding
This work was supported by funding from the National Institutes of Health/National Cancer Institute (U54 CA193417, U01 CA254886, P01 CA265794), NHLBI (R01 HL124106), NSF GRFP DGE-1845298 (BHH), National Science Foundation (MRSEC DMR-1720530 and DMR-1420530 and Grant Agreements CMMI 1548571 and 154857), Human Frontier Science Program Grant RGP00247/2017, and Pennsylvania Department of Health Grant HRFF 4100083101.
Author information
Authors and Affiliations
Contributions
Mai Wang performed experimental work, data analysis, figure construction, and contributed to conceptualization and design of the study. Steven Phan performed experimental work, analyzed data, and contributed to the figure construction. Brandon H. Hayes performed experimental work. Dennis E. Discher designed, conceptualized, and supervised the study. The manuscript was written by Mai Wang and Dennis E. Discher. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, M., Phan, S., Hayes, B. et al. Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma 133, 77–92 (2024). https://doi.org/10.1007/s00412-023-00800-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00412-023-00800-y