Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for “classical” wheat probes (pSc119.2 and Afa family) and “universal” repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
This is a preview of subscription content, access via your institution.
Data availability
The database TRepeT developed in this paper is available at http://trepet.info/ (http://www.iab.ac.ru/). Supplementary Table is available at the Supplementary Information.docx file.
References
Adonina IG, Goncharov NP, Badaeva ED et al (2015) (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp Cytogenet 9:533–547. https://doi.org/10.3897/CompCytogen.v9i4.5120
Adonina IG, Timonova EM, Salina EA (2021) Introgressive hybridization of common wheat: results and prospects. Russ J Genet 57:390–407. https://doi.org/10.1134/S1022795421030029
Appels R, Gerlach WL, Dennis ES et al (1980) Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78:293–311. https://doi.org/10.1007/BF00327389
Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39:1150–1158. https://doi.org/10.1139/g96-145
Badaeva ED, Zoshchuk SA, Paux E et al (2010) Fat element-a new marker for chromosome and genome analysis in the Triticeae. Chromosom Res 18:697–709. https://doi.org/10.1007/s10577-010-9151-x
Badaeva ED, Amosova AV, Goncharov NP et al (2015) A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet Genome Res 146:71–79. https://doi.org/10.1159/000433458
Badaeva ED, Surzhikov SA, Agafonov AV (2019) Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve. Comp Cytogenet 13:389–402. https://doi.org/10.3897/CompCytogen.v13i4.36879
Baum BR, Edwards T, Johnson DA (2014) What does the nr5S DNA multigene family tell us about the genomic relationship between Dasypyrum breviaristatum and D. villosum (Triticeae: Poaceae)? Mol Genet Genomics 289:553–565. https://doi.org/10.1007/s00438-014-0825-5
Baum BR, Johnson DA (2018) Lophopyrum Á. Löve (1980), Thinopyrum Á. Löve (1980), Trichopyrum Á. Löve (1986): one, two or three genera? A study based on the nuclear 5S DNA. Genet Resour Crop Evol 65:161–186. https://doi.org/10.1007/s10722-017-0519-z
Bedbrook JR, Jones J, O’Dell M et al (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560. https://doi.org/10.1016/0092-8674(80)90529-2
Bournival B, Obanni M, Abad A et al (1994) Isolation of a new species-specific repetitive sequence from Thinopyrum elongatum and its use in the studies of alien translocations. Genome 37:97–104. https://doi.org/10.1139/g94-012
Brasileiro-Vidal AC, Cuadrado A, Brammer SP et al (2003) Chromosome characterization in Thinopyrum ponticum (Triticeae, Poaceae) using in situ hybridization with different DNA sequences. Genet Mol Biol 26:505–510. https://doi.org/10.1590/S1415-47572003000400014
Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96. https://doi.org/10.1139/g95-011
Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586. https://doi.org/10.1139/g98-055
Chen G, Zheng Q, Bao Y et al (2012) Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J Biosci 37:149–155. https://doi.org/10.1007/s12038-011-9175-1
Chen Hx, Han Hm, Li Qf et al (2018) Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat. J Integr Agric 17:1697–1705. https://doi.org/10.1016/S2095-3119(17)61861-6
Chen J, Tang Y, Yao L et al (2019) Cytological and molecular characterization of Thinopyrum bessarabicum chromosomes and structural rearrangements introgressed in wheat. Mol Breed 39:146. https://doi.org/10.1007/s11032-019-1054-8
Chen Q, Conner RL, Laroche A, Ahmad F (2001) Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum–Thinopyrum intermedium hybrids. Theor Appl Genet 102:847–852. https://doi.org/10.1007/s001220000496
Chen C, Zheng Z, Wu D et al (2022) Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol Evol 12:e8517. https://doi.org/10.1002/ece3.8517
Cseh A, Yang C, Hubbart-Edwards S et al (2019) Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrym intermedium in a wheat background. Theor Appl Genet 132:1555–1570. https://doi.org/10.1007/s00122-019-03300-9
Cuadrado Á, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119:495–503. https://doi.org/10.1007/s00412-010-0273-x
Cui Y, Zhang Y, Qi J et al (2018) Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome 61:515–521. https://doi.org/10.1139/gen-2018-0019
Cui Y, Xing P, Qi X et al (2021) Characterization of chromosome constitution in three wheat - Thinopyrum intermedium amphiploids revealed frequent rearrangement of alien and wheat chromosomes. BMC Plant Biol 21:129. https://doi.org/10.1186/s12870-021-02896-9
Dai C, Gao A (2016) Identification of wheat-Agropyron cristatum 6P translocation lines and localization of 6P-specific EST markers. Euphytica 208:265–275. https://doi.org/10.1007/s10681-015-1587-9
Dai K, Zhao R, Shi M et al (2020) Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theor Appl Genet 133:217–226. https://doi.org/10.1007/s00122-019-03452-8
Dai Y, Huang S, Sun G et al (2021) Origins and chromosome differentiation of Thinopyrum elongatum revealed by PepC and Pgk1 genes and ND-FISH. Genome 64:901–913. https://doi.org/10.1139/gen-2019-0176
Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611. https://doi.org/10.1007/s00412-012-0384-7
Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730. https://doi.org/10.1007/s00122-013-2253-z
De Pace C, Vaccino P, Cionini PG et al (2011) Dasypyrum. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg, p 185–292. https://doi.org/10.1007/978-3-642-14228-4_4
Divashuk MG, Khuat TML, Kroupin PY et al (2016) Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS One 11:e0154241. https://doi.org/10.1371/journal.pone.0154241
Divashuk MG, Nikitina EA, Sokolova VM et al (2022) qPCR as a Selective Tool for Cytogenetics. Plants 12:80. https://doi.org/10.3390/plants12010080
Dong-Wei G, Gan H, Mao-Yun S et al (2008) Identification of wheat chromosomes sorted by flow cytometry. Acta Agronomica Sinica 34:89–94. https://doi.org/10.1016/S1875-2780(08)60004-8
Dong Z-Z, Fan X, Sha L-N et al (2015) Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. BMC Plant Biol 15:179. https://doi.org/10.1186/s12870-015-0517-2
Dou Q-W, Chen Z-G, Liu Y-A, Tsujimoto H (2009) High frequency of karyotype variation revealed by sequential FISH and GISH in plateau perennial grass forage Elymus nutans. Breeding science 59:651–656. https://doi.org/10.1270/jsbbs.59.651
Dou QW, Zhang TL, Tsujimoto H (2011) Physical mapping of repetitive sequences and genome analysis in six Elymus species by in situ hybridization. J Syst Evol 49:347–352. https://doi.org/10.1111/j.1759-6831.2011.00138.x
Dou QW, Lei Y, Li X et al (2012) Characterization of alien chromosomes in backcross derivatives of Triticum aestivum × Elymus rectisetus hybrids by using molecular markers and sequential multicolor FISH/GISH. Genome 55:337–347. https://doi.org/10.1139/g2012-018
Dou Q, Wang RRC, Lei Y et al (2013) Genome analysis of seven species of Kengyilia (Triticeae: Poaceae) with FISH and GISH. Genome 56:641–649. https://doi.org/10.1139/gen-2013-0113
Dou Q, Yu F, Li Y et al (2017) High molecular karyotype variation revealed in indigenous Elymus nutans in the Qinghai Plateau. Plant Divers 39:117–122. https://doi.org/10.1016/j.pld.2017.05.003
Du P, Zhuang L, Wang Y et al (2017) Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60:93–103. https://doi.org/10.1139/gen-2016-0095
Dubcovsky J, Schlatter AR, Echaide M (1997) Genome analysis of South American Elymus (Triticeae) and Leymus (Triticeae) species based on variation in repeated nucleotide sequences. Genome 40:505–520. https://doi.org/10.1139/g97-067
Dvořák J, Lassner MW, Kota RS, Chen KC (1984) The distribution of the ribosomal RNA genes in the Triticum speltoides and Elytrigia elongata genomes. Can J Genet Cytol 26:628–632. https://doi.org/10.1139/g84-097
Dvořák J, Zhang H-B, Kota RS, Lassner M (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32:1003–1016. https://doi.org/10.1139/g89-545
Frediani M, Colonna N, Cremonini R et al (1994) Redundancy modulation of nuclear DNA sequences in Dasypyrum villosum. Theor Appl Genet 88:167–174. https://doi.org/10.1007/BF00225893
Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. https://doi.org/10.1007/BF00035277
Fu S, Chen L, Wang Y et al (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552. https://doi.org/10.1038/srep10552
Fukui K, Kamisugi Y, Sakai F (1994) Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome 37:105–111. https://doi.org/10.1139/g94-013
Galasso I, Blanco A, Katsiotis A et al (1997) Genomic organization and phylogenetic relationships in the genus Dasypyrum analysed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma 106:53–61. https://doi.org/10.1007/s004120050224
Gao A, Shi J, Liang X (2016) Research on meiotic chromosome pairing in Roegneria sinica var. media evaluated using genomic in situ hybridization. Plant Biotechnol Rep 10:129–139. https://doi.org/10.1007/s11816-016-0393-8
Georgieva M, Sepsi A, Tyankova N, Molnár-Láng M (2011) Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J Appl Genet 52:269–277. https://doi.org/10.1007/s13353-011-0037-1
Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. https://doi.org/10.1093/nar/7.7.1869
Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865. https://doi.org/10.1093/nar/8.21.4851
Gill BS (2022) A century of cytogenetic and genome analysis: impact on wheat crop improvement. Wheat Improvement. Springer International Publishing, Cham, pp 277–297. https://doi.org/10.1007/978-3-030-90673-3_16
Gill BS, Morris KLD, Appels R (1988) Assignment of the genomic affinities of chromosomes from polyploid Elymus species added to wheat. Genome 30:70–82. https://doi.org/10.1139/g88-013
Giorgi D, Farina A, Grosso V et al (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8:e57994. https://doi.org/10.1371/journal.pone.0057994
Gong W, Ran L, Li G et al (2013) Development and utilization of new sequenced characterized amplified region markers specific for E genome of Thinopyrum. Front Biol (Beijing) 8:451–459. https://doi.org/10.1007/s11515-013-1268-9
Gong B, Zhang H, Yang Y et al (2022) Development and identification of a novel wheat–Thinopyrum scirpeum 4E (4D) chromosomal substitution line with stripe rust and powdery mildew resistance. Plant Dis 106:975–983. https://doi.org/10.1094/PDIS-08-21-1599-RE
Grądzielewska A (2006) The genus Dasypyrum - Part 2. Dasypyrum villosum - a wild species used in wheat improvement. Euphytica 152:441–454. https://doi.org/10.1007/s10681-006-9245-x
Grądzielewska A (2009) Identification of Dasypyrum villosum (L.) P. Candargy genetic material introgression to rye using RAPD and STS molecular markers. Ann UMCS, Agric 64:29–40. https://doi.org/10.2478/v10081-009-0025-x
Grewal S, Yang C, Edwards SH et al (2018) Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor Appl Genet 131:389–406. https://doi.org/10.1007/s00122-017-3009-y
Grosso V, Farina A, Gennaro A et al (2012) Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA Probe. PLoS One 7:e0050151. https://doi.org/10.1371/journal.pone.0050151
Gupta PK, Vasistha NK (2018) Wheat cytogenetics and cytogenomics: the present status. The Nucleus 61:195–212. https://doi.org/10.1007/s13237-018-0243-x
Han H, Zhang Y, Liu W et al (2015) Degenerate oligonucleotide primed-polymerase chain reaction-based chromosome painting of P genome chromosomes in Agropyron cristatum and wheat-A. cristatum addition lines. Crop Sci 55:2798–2805. https://doi.org/10.2135/cropsci2015.03.0183
Han H, Liu W, Lu Y et al (2017) Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta 245:425–437. https://doi.org/10.1007/s00425-016-2616-1
Han H, Liu W, Zhang J et al (2019) Identification of P genome chromosomes in Agropyron cristatum and wheat-A. cristatum derivative lines by FISH. Sci Rep 9:9712. https://doi.org/10.1038/s41598-019-46197-6
Han H, Ma X, Wang Z et al (2022) Chromosome 5P of Agropyron cristatum induces chromosomal translocation by disturbing homologous chromosome pairing in a common wheat background. Crop J. https://doi.org/10.1016/j.cj.2022.06.002
Hao M, Zhang L, Ning S et al (2020) The resurgence of introgression breeding, as exemplified in wheat improvement. Front Plant Sci 11:252. https://doi.org/10.3389/fpls.2020.00252
He R, Chang Z, Yang Z et al (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180. https://doi.org/10.1007/s00122-009-0971-z
Houben A, Aliyeva-Schnorr L, Joshi GP, Endo TR (2018) Cytogenetics and Genetic Stocks for Physical Mapping and Sequencing. In: Stein, N., Muehlbauer G (ed) The Barley Genome. Compendium of Plant Genomes. Springer, Cham, pp 25–44. https://doi.org/10.1007/978-3-319-92528-8_3
Hutchinson J, Lonsdale DM (1982) The chromosomal distribution of cloned highly repetitive sequences from hexaploid wheat. Heredity 48:371–376. https://doi.org/10.1038/hdy.1982.49
Ivanova YN, Rosenfread KK, Stasyuk AI et al (2021) Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium. Vavilovskii Zhurnal Genet Selektsii 25:701–712. https://doi.org/10.18699/VJ21.080
Jia H, Feng H, Yang G et al (2022) Establishment and identification of six wheat-Thinopyrum ponticum disomic addition lines derived from partial amphiploid Xiaoyan 7430. Theor Appl Genet 135:3277–3291. https://doi.org/10.1007/s00122-022-04185-x
Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosom Res 27:153–165. https://doi.org/10.1007/s10577-019-09607-z
Jiang J, Gill BS (1993) A zebra chromosome arising from multiple translocations involving non-homologous chromosomes. Chromosoma 102:612–617. https://doi.org/10.1007/BF00352308
Jiang J, Mords KLD, Gill BS (1994) Introgression of Elymus trachycaulus chromatin into common wheat. Chromosome Res 2:3–13. https://doi.org/10.1007/BF01539447
Jiang C, Jiang W, Liu M et al (2022) Characterization of a wheat-Dasypyrum breviaristatum chromosome addition and its derived progenies carrying novel Dasypyrum-specific gliadin genes. Agronomy 12:1673. https://doi.org/10.3390/agronomy12071673
Kim N-S, Whelan EDP, Fedak G, Armstrong K (1992) Identification of a Triticum – Lophopyrum noncompensating translocation line and detection of Lophopyrum DNA using a wheatgrass specific molecular probe. Genome 35:541–544. https://doi.org/10.1139/g92-080
Kishii M, Wang RR-C, Tsujimoto H (2005) GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. Czech J Genet Plant Breed 41:92–95. https://doi.org/10.17221/6143-CJGPB
Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137. https://doi.org/10.1139/gen-2013-0003
Kong L, Song X, Xiao J et al (2018) Development and characterization of a complete set of Triticum aestivum–Roegneria ciliaris disomic addition lines. Theor Appl Genet 131:1793–1806. https://doi.org/10.1007/s00122-018-3114-6
Kroupin PY, Divashuk MG, Belov VI et al (2011) Comparative molecular cytogenetic characterization of partial wheat-wheatgrass hybrids. Russ J Genet 47:432–437. https://doi.org/10.1134/S1022795411040077
Kroupin P, Kuznetsova V, Romanov D et al (2019a) Pipeline for the rapid development of cytogenetic markers using genomic data of related species. Genes 10:113. https://doi.org/10.3390/genes10020113
Kroupin PY, Divashuk MG, Karlov GI (2019b) Gene resources of perennial wild cereals involved in breeding to improve wheat crop. Sel’skokhozyaistvennaya Biol 54:409–425. https://doi.org/10.15389/agrobiology.2019.3.409eng
Kroupin PY, Kuznetsova VM, Nikitina EA et al (2019c) Development of new cytogenetic markers for Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang Comp Cytogenet 13:231–243. https://doi.org/10.3897/CompCytogen.v13i3.36112
Kroupin PY, Badaeva ED, Sokolova VM et al (2022) Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: application in phylogenetic studies of the Triticeae. Front Plant Sci 13:980764. https://doi.org/10.3389/fpls.2022.980764
Kruppa K, Türkösi E, Mayer M et al (2016) McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet 57:427–437. https://doi.org/10.1007/s13353-016-0343-8
Kumar A, Choudhary A, Kaur H, Mehta S (2022) A walk towards wild grasses to unlock the clandestine of gene pools for wheat improvement: A review. Plant Stress 3:100048. https://doi.org/10.1016/j.stress.2021.100048
Kuznetsova VM, Razumova OV, Karlov GI et al (2019) Some peculiarities in application of denaturating and non-denaturating in situ hybridization on chromosomes of cereals. Moscow Univ Biol Sci Bull 74:75–80. https://doi.org/10.3103/S0096392519020056
Kwiatek MT, Kurasiak-Popowska D, Mikołajczyk S et al (2019) Cytological markers used for identification and transfer of Aegilops spp. chromatin carrying valuable genes into cultivated forms of Triticum. Comp Cytogenet. 13:41–59. https://doi.org/10.3897/CompCytogen.v13i1.30673
Lang T, La S, Li B et al (2018) Precise identification of wheat-Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome 61:177–185. https://doi.org/10.1139/gen-2017-0229
Lang T, Li G, Wang H et al (2019a) Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 249:663–675. https://doi.org/10.1007/s00425-018-3033-4
Lang T, Li G, Yu Z et al (2019b) Genome-wide distribution of novel Ta-3A1 mini-satellite repeats and its use for chromosome identification in wheat and related species. Agronomy 9:60. https://doi.org/10.3390/agronomy9020060
Lapitan NLV, Gill BS, Sears RG (1987) Genomic and phylogenetic relationships among rye and perennial species in the Triticeae. Crop Sci 27:682–687. https://doi.org/10.2135/cropsci1987.0011183x002700040014x
Laugerotte J, Baumann U, Sourdille P (2022) Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. Plant Biotechnol J 20:812–832
Lei J, Zhou J, Sun H et al (2020) Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. Crop J 8:676–681. https://doi.org/10.1016/j.cj.2020.02.008
Li WL, Chen PD, Qi LL, Liu DJ (1995) Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theoret. Appl. Genetics 90:526–533. https://doi.org/10.1007/BF00221999
Li XM, Lee BS, Mammadov AC et al (2007) CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome 50:400–411. https://doi.org/10.1139/G07-025
Li G-R, Liu C, Wei P et al (2012) Chromosomal distribution of a new centromeric Ty3-gypsy retrotransposon sequence in Dasypyrum and related Triticeae species. J Genet 91:343–348. https://doi.org/10.1007/s12041-012-0181-3
Li GR, Zhao JM, Li DH et al (2014) A novel wheat-Dasypyrum breviaristatum substitution line with stripe rust resistance. Cytogenet Genome Res 143:280–287. https://doi.org/10.1159/000366051
Li G, Lang T, Dai G et al (2015) Precise identification of two wheat–Thinopyrum intermedium substitutions reveals the compensation and rearrangement between wheat and Thinopyrum chromosomes. Mol Breed 35:1. https://doi.org/10.1007/s11032-015-0202-z
Li G, Gao D, Zhang H et al (2016a) Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species. Mol Cytogenet 9:6. https://doi.org/10.1186/s13039-016-0217-0
Li G, Wang H, Lang T et al (2016b) New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta 244:865–876. https://doi.org/10.1007/s00425-016-2554-y
Li H, Lv M, Song L et al (2016c) Production and identification of wheat-Agropyron cristatum 2P translocation lines. PLoS One 11:e0145928. https://doi.org/10.1371/journal.pone.0145928
Li H, Jiang B, Wang J et al (2017a) Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet 130:109–121. https://doi.org/10.1007/s00122-016-2797-9
Li X, Jiang X, Chen X et al (2017b) Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance. PLoS One 12:e0184462. https://doi.org/10.1371/journal.pone.0184462
Li D, Li T, Wu Y et al (2018) FISH-based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Front Plant Sci 9:526. https://doi.org/10.3389/fpls.2018.00526
Li D, Zhang J, Liu H et al (2019a) Characterization of a wheat-tetraploid Thinopyrum elongatum 1E(1D) substitution line K17–841–1 by cytological and phenotypic analysis and developed molecular markers. BMC Genomics 20:963. https://doi.org/10.1186/s12864-019-6359-9
Li H, Dong Z, Ma C et al (2019b) Physical mapping of stem rust resistance gene Sr52 from Dasypyrum villosum based on ph1b-induced homoeologous recombination. Int J Mol Sci 20:4887. https://doi.org/10.3390/ijms20194887
Li J, Chen Q, Zhang P et al (2019c) Comparative FISH and molecular identification of new stripe rust resistant wheat-Thinopyrum intermedium ssp. trichophorum introgression lines. Crop J 7:819–829. https://doi.org/10.1016/j.cj.2019.06.001
Li G, Zhang T, Yu Z et al (2021a) An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J 105:978–993. https://doi.org/10.1111/tpj.15081
Li J, Yu Z, Zhang A et al (2021b) Physical mapping of chromosome 7J and a purple coleoptile gene from Thinopyrum intermedium in the common wheat background. Planta 253:22. https://doi.org/10.1007/s00425-020-03552-6
Li M, Wang Y, Liu X et al (2021c) Molecular cytogenetic identification of a novel wheat–Thinopyrum ponticum 1JS (1B) Substitution line resistant to powdery mildew and leaf rust. Front Plant Sci 12:727734. https://doi.org/10.3389/fpls.2021.727734
Li J, Bao Y, Han R et al (2022a) Molecular and cytogenetic identification of stem rust resistant wheat-Thinopyrum intermedium introgression lines. Plant Dis. https://doi.org/10.1094/PDIS-10-21-2274-RE
Li M, Yuan Y, Ni F et al (2022b) Characterization of two wheat-Thinopyrum ponticum introgression lines with pyramiding resistance to powdery mildew. Front Plant Sci 13:943669. https://doi.org/10.3389/fpls.2022.943669
Linc G, Sepsi A, Molnár-Láng M (2012) A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet Genome Res 136:138–144. https://doi.org/10.1159/000334835
Linc G, Gaal E, Molnar I et al (2017) Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS One 12:e0173623. https://doi.org/10.1371/journal.pone.0173623
Linde-Laursen I, Seberg O (2001) Karyotypes of Elymus scabrifolius (Poaceae: Triticeae) from South America studied by banding techniques and in situ hybridization. Hereditas 135:41–50. https://doi.org/10.1111/j.1601-5223.2001.00041.x
Liu Z, Li D, Zhang X (2007) Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic Southern and in situ hybridization. J Integr Plant Biol 49:1080–1086. https://doi.org/10.1111/j.1672-9072.2007.00462.x
Liu C, Yang ZJ, Jia JQ et al (2009) Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res Commun 37:363–372. https://doi.org/10.1556/CRC.37.2009.3.5
Liu C, Li GR, Sehgal SK et al (2010a) Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Syst Evol 288:149–156. https://doi.org/10.1007/s00606-010-0319-9
Liu WH, Luan Y, Wang JC et al (2010b) Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation. Genome 53:472–481. https://doi.org/10.1139/G10-023
Liu R, Wang RRC, Yu F et al (2017) Characterization of genome in tetraploid StY species of Elymus (Triticeae: Poaceae) using sequential FISH and GISH. Genome 60:679–685. https://doi.org/10.1139/gen-2017-0046
Liu L, Luo Q, Li H et al (2018a) Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor Appl Genet 131:2359–2370. https://doi.org/10.1007/s00122-018-3158-7
Liu L, Luo Q, Teng W et al (2018b) Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta 247:1099–1108. https://doi.org/10.1007/s00425-018-2845-6
Liu R, Yu F, Wei L et al (2020) Development and application of transposable element-based chromosomal markers for the st genome in Triticeae. Cytogenet Genome Res 159:215–224. https://doi.org/10.1159/000504690
Liu B, Tao XY, Dou QW (2022a) Molecular cytogenetic study on the plants of Elymus nutans with varying fertility on the Qinghai Plateau. Plant Divers. https://doi.org/10.1016/j.pld.2021.12.003
Liu B, Tao X, Dou Q (2022b) Meiotic chromosomal abnormality detected in a heterozygote of Elymus nutans. Front Plant Sci 13:895437. https://doi.org/10.3389/fpls.2022.895437
Lu M, Lu Y, Li H et al (2016) Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS One 11:e0159577. https://doi.org/10.1371/journal.pone.0159577
Luan Y, Wang X, Liu W et al (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510. https://doi.org/10.1007/s00425-010-1187-9
Lucía V, Martínez-Ortega MM, Rico E, Anamthawat-Jónsson K (2019) Discovery of the genus Pseudoroegneria (Triticeae, Poaceae) in the Western Mediterranean on exploring the generic boundaries of Elymus. J Syst Evol 57:23–41. https://doi.org/10.1111/jse.12426
Lucretti S, Giorgi D, Farina A, Grosso V (2014) FISHIS: a new way in chromosome flow sorting makes complex genomes more accessible. genomics of plant genetic resources. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht, pp 319–348. https://doi.org/10.1007/978-94-007-7572-5_13
Ma Y, Tomita M, Nakata NYY (1994) Repeated DNA sequence 350bp family cloned from Agropyron intermedium for identification of the Agropyron chromosomes added to common wheat lines. Japanese J Breed 44:183–189. https://doi.org/10.1270/jsbbs1951.44.183
Mahelka V, Kopecký D (2010) Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Mol Biol Evol 27:1370–1390. https://doi.org/10.1093/molbev/msq021
Mahelka V, Kopecký D, Baum BR (2013) Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol Biol Evol 30:2065–2086. https://doi.org/10.1093/molbev/mst106
McIntyre CL, Clarke BC, Appels R (1988) Amplification and dispersion of repeated DNA sequences in the Triticeae. Plant Syst Evol 160:39–59. https://doi.org/10.1007/BF00936708
McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640. https://doi.org/10.1139/g90-094
Mikhailova E, Doležel J (2021) Rye Cytogenetics and Chromosome Genomics. In: Rabanus-Wallace, M.T., Stein, N. (eds) The Rye Genome. Compendium of Plant Genomes. Springer, Cham, pp 43–62. https://doi.org/10.1007/978-3-030-83383-1_3
Molnár-Láng M, Molnár I, Szakács É et al (2014) Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht, pp 255–283. https://doi.org/10.1007/978-94-007-7572-5_11
Mondal S, Rutkoski JE, Velu G et al (2016) Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front Plant Sci 7:991. https://doi.org/10.3389/fpls.2016.00991
Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494. https://doi.org/10.1139/g93-067
Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486. https://doi.org/10.1139/g95-063
Nagaki K, Tsujimoto H, Sasakuma T (1998) H genome specific repetitive sequence, pEt2, of Elymus trachycaulus in part of Afa family of Triticeae. Genome 41:134–136. https://doi.org/10.1139/g97-10
Naranjo T (2019) The Effect of Chromosome structure upon meiotic homologous and homoeologous recombinations in Triticeae. Agronomy 9:552. https://doi.org/10.3390/agronomy9090552
Nikitina E, Kuznetsova V, Kroupin P et al (2020) Development of specific Thinopyrum cytogenetic markers for wheat-wheatgrass hybrids using sequencing and qPCR data. Int J Mol Sci 21:1–18. https://doi.org/10.3390/ijms21124495
Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. https://doi.org/10.1186/1471-2105-11-378
Ochoa V, Madrid E, Said M et al (2015) Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201:89–95. https://doi.org/10.1007/s10681-014-1190-5
Ørgaard M, Anamthawat-Jónsson K (2001) Genome discrimination by in situ hybridization in Icelandic species of Elymus and Elytrigia (Poaceae: Triticeae). Genome 44:275–283. https://doi.org/10.1139/gen-44-2-275
Pace CD, Delre V, Mugnozza GTS et al (2008) Molecular and chromosomal characterization of repeated and single-copy DNA sequences in the genome of Dasypyrum villosum. Hereditas 116:55–65. https://doi.org/10.1111/j.1601-5223.1992.tb00800.x
Pan C, Li Q, Lu Y et al (2017) Chromosomal localization of genes conferring desirable agronomic traits from Agropyron cristatum chromosome 1P. PLoS One 12:e0175265. https://doi.org/10.1371/journal.pone.0175265
Pan C, Li Q, Han H et al (2022) Identification of 5P chromosomes in wheat-Agropyron cristatum addition line and analysis of its effect on homologous pairing of wheat chromosomes. Front Plant Sci 13:844348. https://doi.org/10.3389/fpls.2022.844348
Parisod C, Badaeva ED (2020) Chromosome restructuring among hybridizing wild wheats. New Phytol 226:1263–1273. https://doi.org/10.1111/nph.16415
Patokar C, Sepsi A, Schwarzacher T et al (2016) Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma 125:163–172. https://doi.org/10.1007/s00412-015-0537-6
Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39:93–104. https://doi.org/10.1139/g96-013
Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res 15:3–19. https://doi.org/10.1007/s10577-006-1108-8
Qiao L, Liu S, Li J et al (2021) Development of sequence-tagged site marker set for identification of J, JS, and St sub-genomes of Thinopyrum intermedium in wheat background. Front Plant Sci 12:685216. https://doi.org/10.3389/fpls.2021.685216
Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Report 4:102–109. https://doi.org/10.1007/BF02732107
Rey E, Molnár I, Doležel J (2015) Genomics of wild relatives and alien introgressions. alien introgression in wheat. In: Molnár-Láng, M., Ceoloni, C., Doležel, J. (eds) Alien Introgression in Wheat. Springer, Cham. https://doi.org/10.1007/978-3-319-23494-6_13
Said M, Hřibová E, Danilova TV et al (2018) The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor Appl Genet 131:2213–2227. https://doi.org/10.1007/s00122-018-3148-9
Salina EA, Adonina IG, Badaeva ED et al (2015) A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica 204:91–101. https://doi.org/10.1007/s10681-014-1344-5
Salina E, Adonina I, A. Salina E, G. Adonina I (2019) Cytogenetics in the study of chromosomal rearrangement during wheat evolution and breeding. In: Larramendy ML, Soloneski S (eds) Cytogenetics - Past, Present and Further Perspectives. IntechOpen, London, pp 1–18. https://doi.org/10.5772/intechopen.80486
Shcherban AB (2015) Repetitive DNA sequences in plant genomes. Russ J Genet Appl Res 5:159–167. https://doi.org/10.1134/S2079059715030168
Sibikeev SN, Badaeva ED, Gultyaeva EI et al (2017) Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ J Genet 53:314–324. https://doi.org/10.1134/S1022795417030115
Singh AK, Zhang P, Dong C, et al (2019) Molecular cytogenetic characterization of stem rust and stripe rust resistance in wheat-Thinopyrum bessarabicum–derived doubled haploid lines. Mol Breed 39:125. https://doi.org/10.1007/s11032-019-1034-z
Singh AK, Zhang P, Dong C et al (2020) Development and molecular cytogenetic characterization of Thinopyrum bessarabicum introgression lines in hexaploid and tetraploid wheats. Theor Appl Genet 133:2117–2130. https://doi.org/10.1007/s00122-020-03581-5
Song L, Lu Y, Zhang J et al (2016) Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129:1023–1034. https://doi.org/10.1007/s00122-016-2680-8
Song X, Song R, Zhou J et al (2020) Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L. Chromosom Res 28:171–182. https://doi.org/10.1007/s10577-020-09627-0
Sun H, Song J, Lei J et al (2018) Construction and application of oligo-based FISH karyotype of Haynaldia villosa. J Genet Genomics 45:463–466
Sun Y, Lyu M, Han H et al (2021) Identification and fine mapping of alien fragments associated with enhanced grain weight from Agropyron cristatum chromosome 7P in common wheat backgrounds. Theor Appl Genet 134:3759–3772. https://doi.org/10.1007/s00122-021-03927-7
Sun Y, Han H, Wang X et al (2022) Development and application of universal ND-FISH probes for detecting P-genome chromosomes based on Agropyron cristatum transposable elements. Mol Breed 42:48. https://doi.org/10.1007/s11032-022-01320-w
Tan L, Huang QX, Song Y et al (2022) Biosystematics studies on Elymus breviaristatus and Elymus sinosubmuticus (Poaceae: Triticeae). BMC Plant Biol 22:57. https://doi.org/10.1186/s12870-022-03441-y
Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. https://doi.org/10.1007/s13353-014-0215-z
Tang ZX, Yang ZJ, Fu SL et al (2011) A new long terminal repeat (LTR) sequence allows to identify J genome from Js and St genomes of Thinopyrum intermedium. J Appl Genet 52:31–33. https://doi.org/10.1007/s13353-010-0019-8
Tang S, Qiu L, Xiao Z et al (2016) New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes 7:118. https://doi.org/10.3390/genes7120118
Tang S, Tang Z, Qiu L et al (2018) Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Front Plant Sci 9:1104. https://doi.org/10.3389/fpls.2018.01104
Tao X, Liu B, Dou Q (2021) The Kengyilia hirsuta karyotype polymorphisms as revealed by FISH with tandem repeats and single-gene probes. Comp Cytogenet 15:375–392. https://doi.org/10.3897/compcytogen.v15.i4.71525
Tiryaki I, Karaoğlu GB, Yücel G, Tuna M (2021) Assessment of Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey accessions using universal rice primers and molecular cytogenetics. Genet Resour Crop Evol 68:1875–1888. https://doi.org/10.1007/s10722-020-01101-4
Tomas PA, González GE, Schrauf GE, Poggio L (2012) Chromosomal characterization in native populations of Elymus scabrifolius from Argentina through classical and molecular cytogenetics (FISH-GISH). Genome 55:591–598. https://doi.org/10.1139/g2012-046
Trifonova AA, Boris KV, Dedova LV et al (2018) Genome polymorphism of the synthetic species xTrititrigia cziczinii Tsvel. inferred from AFLP analysis. Vavilov J Genet Breed 22:648–653. https://doi.org/10.18699/VJ18.406
Tsujimoto H, Gill BS (1991) Repetitive DNA sequences from polyploid Elymus trachycaulus and the diploid progenitor species: detection and genomic affinity of Elymus chromatin added to wheat. Genome 34:782–789. https://doi.org/10.1139/g91-122
Uslu E, Reader SM, Miller TE (1999) Characterization of Dasypyrum villosum (L.) Candargy chromosomes by flourescent in situ hybridization. Hereditas 131:129–134. https://doi.org/10.1111/j.1601-5223.1999.00129.x
Uzma KG, Gul A, Mujeeb-Kazi A (2015) Use of alien diversity to combat some major biotic stresses in Triticum aestivum L. crop production and global environmental issues. In: Hakeem, K. (eds) Crop Production and Global Environmental Issues. Springer, Cham, pp 319–347. https://doi.org/10.1007/978-3-319-23162-4_14
Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833. https://doi.org/10.1105/tpc.7.11.1823
Vershinin A V, Alkhimova EG, Heslop-Harrison JS (1996) Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Research 4:517–525. https://doi.org/10.1007/BF02261779
Wang RR-C (2011) Agropyron and Psathyrostachys. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources, pp 77–108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_2
Wang RRC, Lu B (2014) Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J Syst Evol 52:697–705. https://doi.org/10.1111/jse.12084
Wang RR-C, Wei J-Z (1995) Variations of two repetitive DNA sequences in several Triticeae genomes revealed by polymerase chain reaction and sequencing. Genome 38:1221–1229. https://doi.org/10.1139/g95-160
Wang XE, Chen PD, Liu DJ et al (2001) Molecular cytogenetic characterization of Roegneria ciliaris chromosome additions in common wheat. Theor Appl Genet 102:651–657. https://doi.org/10.1007/s001220051693
Wang J, Xiang F, Xia G (2005) Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line. Planta 221:277–286. https://doi.org/10.1007/s00425-004-1443-y
Wang Q, Xiang J, Gao A et al (2010) Analysis of chromosomal structural polymorphisms in the St, P, and Y genomes of Triticeae (Poaceae). Genome 53:241–249. https://doi.org/10.1139/G09-098
Wang Q, Han H, Gao A et al (2014) P chromosomes involved in intergenomic rearrangements of Kengyilia thoroldiana affected by the environment. J Genet 93:199–202. https://doi.org/10.1007/s12041-014-0335-6
Wang H, Dai K, Xiao J et al (2017a) Development of intron targeting (IT) markers specific for chromosome arm 4VS of Haynaldia villosa by chromosome sorting and next-generation sequencing. BMC Genomics 18:167. https://doi.org/10.1186/s12864-017-3567-z
Wang L, Shi Q, Su H et al (2017b) St2-80: a new FISH marker for St genome and genome analysis in Triticeae. Genome 60:553–563. https://doi.org/10.1139/gen-2016-0228
Wang H, Yu Z, Li B et al (2018) Characterization of new wheat-Dasypyrum breviaristatum introgression lines with superior Gene(s) for spike length and stripe rust resistance. Cytogenet Genome Res. https://doi.org/10.1159/000493562
Wang H, Yu Z, Li G, Yang Z (2019) Diversified chromosome rearrangements detected in a wheat-Dasypyrum breviaristatum substitution line induced by gamma-ray irradiation. Plants 8:175. https://doi.org/10.3390/plants8060175
Wang YY, Cao Q, Zhang J et al (2020) Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front Plant Sci 11:1282. https://doi.org/10.3389/fpls.2020.01282
Wang S, Wang C, Feng X et al (2022a) Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat–Thinopyrum intermedium and wheat–Thinopyrum ponticum substitution lines. BMC Plant Biol 22:111. https://doi.org/10.1186/s12870-022-03496-x
Wang X, Han B, Sun Y et al (2022b) Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theor Appl Genet. https://doi.org/10.1007/s00122-022-04086-z
Wilson JJ (2008) Production of wheat-Haynaldia villosa Robertsonian chromosomal translocations. Kansas State University. Available online: https://krex.k-state.edu/bitstream/handle/2097/1085/JamieWilson2008.pdf. Accessed 6 March 2023
Wu M, Zhang JP, Wang JC et al (2010) Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica 172:363–372. https://doi.org/10.1007/s10681-009-0033-2
Wu D, Zhu X, Tan L et al (2021a) Characterization of each St and Y genome chromosome of Roegneria grandis based on newly developed FISH markers. Cytogenet Genome Res 161:213–222. https://doi.org/10.1159/000515623
Wu N, Lei Y, Pei D et al (2021b) Predominant wheat-alien chromosome translocations in newly developed wheat of China. Mol Breed 41:30. https://doi.org/10.1007/s11032-021-01206-3
Wu N, He Z, Fang J et al (2022) Chromosome diversity in Dasypyrum villosum, an important genetic and trait resource for hexaploid wheat engineering. Ann Bot 131:185–198. https://doi.org/10.1093/aob/mcac054
Xi W, Tang Z, Tang S et al (2019) New ND-FISH-positive oligo probes for identifying Thinopyrum chromosomes in wheat backgrounds. Int J Mol Sci 20:2031. https://doi.org/10.3390/ijms20082031
Xiao Z, Tang S, Qiu L et al (2017) Oligonucleotides and ND-fish displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat backgrounds. Molecules 22:973. https://doi.org/10.3390/molecules22060973
Xie J, Zhao Y, Yu L et al (2020) Molecular karyotyping of Siberian wild rye (Elymus sibiricus L.) with oligonucleotide fluorescence in situ hybridization (FISH) probes. PLoS One 15:e0227208. https://doi.org/10.1371/journal.pone.0227208
Xin Z-Y, Appels R (1988) Occurrence of rye (Secale cereale) 350-family DNA sequences in Agropyron and otherTriticeae. Plant Syst Evol 160:65–76. https://doi.org/10.1007/BF00936710
Yang Z-J, Li G-R, Feng J et al (2006a) Molecular cytogenetic characterization and disease resistance observation of wheat-Dasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas 142:80–85. https://doi.org/10.1111/j.1601-5223.2005.01918.x
Yang Z-J, Liu C, Feng J et al (2006b) Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas 143:47–54. https://doi.org/10.1111/j.2006.0018-0661.01930.x
Yang Z, Zhang T, Liu C et al (2008) Identification of wheat-Dasypyrum breviaristatum addition lines with stripe rust resistance using C-banding and genomic in situ hybridization. In: 11th International Wheat Genetics Symposium, Sydney, pp 24–29
Yang G, Boshoff WHP, Li H et al (2021a) Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat–Thinopyrum ponticum translocation line WTT34. Theor Appl Genet 134:1587–1599. https://doi.org/10.1007/s00122-021-03796-0
Yang G, Zheng Q, Hu P et al (2021b) Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat–Thinopyrum intermedium translocation line WTT11. aBIOTECH 2:343–356. https://doi.org/10.1007/s42994-021-00060-3
Yang G, Tong C, Li H et al (2022) Cytogenetic identification and molecular marker development of a novel wheat–Thinopyrum ponticum translocation line with powdery mildew resistance. Theor Appl Genet 135:2041–2057. https://doi.org/10.1007/s00122-022-04092-1
Ye X, Lu Y, Liu W et al (2015) The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theor Appl Genet 128:797–811
Yu Z, Wang H, Xu Y et al (2019) Characterization of chromosomal rearrangement in new wheat—Thinopyrum intermedium addition lines carrying Thinopyrum—specific grain hardness genes. Agronomy 9:18. https://doi.org/10.3390/agronomy9010018
Yu Z, Wang H, Jiang W et al (2021) Karyotyping Dasypyrum breviaristatum chromosomes with multiple oligonucleotide probes reveals the genomic divergence in Dasypyrum. Genome 64:789–800. https://doi.org/10.1139/gen-2020-0147
Yuan WY, Tomita M (2009) Centromeric distribution of 350-family in Dasypyrum villosum and its application to identifying Dasypyrum chromatin in the wheat genome. Hereditas 146:58–66. https://doi.org/10.1111/j.1601-5223.2009.02110.x
Zhang H-B, Dvořák J (1990a) Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes. Genome 33:283–293. https://doi.org/10.1139/g90-044
Zhang H-B, Dvořák J (1990b) Characterization and distribution of an interspersed repeated nucleotide sequence from Lophopyrum elongatum and mapping of a segregation-distortion factor with it. Genome 33:927–936. https://doi.org/10.1139/g90-139
Zhang XY, Dong YS, Li P, Wang RR (1998) Distribution of E- and St-specific RAPD fragments in few genomes of triticeae. Yi Chuan Xue Bao 25:131–141
Zhang W, Zhang RQ, Feng YG et al (2013) Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chinese Sci Bull 58:890–897. https://doi.org/10.1007/s11434-012-5598-9
Zhang H, Li G, Li D et al (2015a) Molecular and cytogenetic characterization of new wheat—Dasypyrum breviaristatum derivatives with post-harvest re-growth habit. Genes 6:1242–1255. https://doi.org/10.3390/genes6041242
Zhang J, Jiang Y, Guo Y et al (2015b) Identification of novel chromosomal aberrations induced by 60co-ϒ-irradiation in wheat-Dasypyrum villosum lines. Int J Mol Sci 16:29787–29796. https://doi.org/10.3390/ijms161226134
Zhang JJ, Zhang JJ, Liu W et al (2015c) Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128:1827–1837. https://doi.org/10.1007/s00122-015-2550-9
Zhang J, Jiang Y, Wang Y et al (2018) Molecular markers and cytogenetics to characterize a wheat-Dasypyrum villosum 3V (3D) substitution line conferring resistance to stripe rust. PLoS One 13:e0202033. https://doi.org/10.1371/journal.pone.0202033
Zhang J, Tang S, Lang T et al (2022) Molecular cytogenetic identification of the wheat–Dasypyrum villosum T3DL·3V#3S translocation line with resistance against stripe rust. Plants 11:1329. https://doi.org/10.3390/plants11101329
Zhang R, Xiong C, Mu H et al (2021a) Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J 9:882–888. https://doi.org/10.1016/j.cj.2020.09.012
Zhang S, Fan C, Luo J, et al (2021b) KASP markers to detect sub-chromosomal arm translocations between 6VS of Haynaldia villosa and 6AS of wheat. Euphytica 217:. https://doi.org/10.1007/s10681-020-02744-1
Zhang T, Liu G, Zhao H et al (2021c) Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. Plant Biotechnol J 19:1967–1978. https://doi.org/10.1111/pbi.13610
Zhang X, Cui C, Bao Y et al (2021d) Molecular cytogenetic characterization of a novel wheat-Thinopyrum intermedium introgression line tolerant to phosphorus deficiency. Crop J 9:816–822. https://doi.org/10.1016/j.cj.2020.08.014
Zhang X, Wan W, Li M et al (2021e) Targeted sequencing of the short arm of chromosome 6V of a wheat relative Haynaldia villosa for marker development and gene mining. Agronomy 11:1695. https://doi.org/10.3390/agronomy11091695
Zhao Y, Xie J, Dou Q et al (2017) Diversification of the P genome among Agropyron Gaertn. (Poaceae) species detected by FISH. Comp Cytogenet 11:495–509. https://doi.org/10.3897/CompCytogen.v11i3.13124
Zhao J, Hao W, Tang C et al (2019) Plasticity in Triticeae centromere DNA sequences: a wheat × tall wheatgrass (decaploid) model. Plant J 100:314–327. https://doi.org/10.1111/tpj.14444
Zheng Q, Li B, Mu S et al (2006) Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome 49:1109–1114. https://doi.org/10.1139/G06-073
Acknowledgements
This study was funded by the Russian Science Foundation, grant number 21-16-00123.
Funding
This study was funded by the Russian Science Foundation, grant number 21–16-00123.
Author information
Authors and Affiliations
Contributions
Conceptualization: Pavel Yu. Kroupin and Mikhail G. Divashuk; literature search and data analysis: Pavel Yu. Kroupin and Daniil S. Ulyanov; funding acquisition: Pavel Yu. Kroupin; writing—original draft: Pavel Yu. Kroupin; writing—review and editing: Mikhail G. Divashuk and Gennady I. Karlov. All authors have read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethical approval
This study did not involve any studies with animals or human participants as objects of research.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kroupin, P.Y., Ulyanov, D.S., Karlov, G.I. et al. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma (2023). https://doi.org/10.1007/s00412-023-00789-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00412-023-00789-4
Keywords
- In situ hybridization
- Wheat wild relatives
- Wide hybridization
- Wheat improvement
- Repeated satellite DNA
- DNA probes
- Agropyron
- Dasypyrum
- Thinopyrum
- Pseudoroegneria
- Elymus
- Roegneria
- Kengyilia