Skip to main content

Evolution of the parthenogenetic rock lizard hybrid karyotype: Robertsonian translocation between two maternal chromosomes in Darevskia rostombekowi

Abstract

Darevskia rostombekowi, the most outstanding of the seven known parthenogenetic species in the genus Darevskia, is the result of an ancestral cross between two bisexual species Darevskia raddei and Darevskia portschinskii. The chromosomal set of this species includes a unique submetacentric autosomal chromosome; the origin of this chromosome was unresolved as only acrocentric chromosomes are described in the karyotypes of Darevskia genus normally. Here, we applied a suite of molecular cytogenetic techniques, including the mapping of telomeric (TTAGGG) n repeats using fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and whole-chromosome painting (WCP) in both D. rostombekowi and parental (D. portschinskii and D. raddei) species. The obtained results in total suggest that a de novo chromosomal rearrangement via Robertsonian translocation (centric fusion) between two maternal (D. raddei) acrocentric chromosomes of different size was involved in the formation of this unique submetacentric chromosome present in the parthenogenetic species D. rostombekowi. Our findings provide new data in specific and rapid evolutional processes of a unisexual reptile species karyotype.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The following information was supplied regarding data availability: All raw data are deposited online: RAW DATA Rock Lizards. https://doi.org/10.5281/zenodo.3909394.

References

  1. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9(12):923–937

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bickmore WA (2013) The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14:67–84

    CAS  PubMed  Google Scholar 

  3. Bobyn М, Darevsky I, Kupriyanova L, Mac Culloch R, Upton D, Danielyan F, Murphy R (1996) Allozyme variation a populations of Lacerta raddei and Lacerta nairensis (Sauria: Lacertidae) from Armenia. Amphibia-Reptilia 17(3):233–246

    Google Scholar 

  4. Boettger O (1892) Wissenschaftliche Ergebnisse der eise Dr. Jean Valentins im Sommer 1890. Berichte über die Senckenbergische Naturforschende Gesellschaft Frankfurt am Main 1892:131–150

    Google Scholar 

  5. Capanna E, Redi CA (1994) Chromosomes and microevolutionary processes. Ital J Zool 61(4):285–294

    Google Scholar 

  6. Danielyan FD (1987) Study of mixed populations of three parthenogenetic species of the rock lizards (Lacerta saxicola complex) in Armenia. Proc Zool Inst 158:77–83

    Google Scholar 

  7. Darevsky IS (1958) Natural parthenogenesis in some subspecies of the rock lizard (Lacerta saxicola Eversmann), widespread in Armenia. Reports of the Academy of Sciences of the USSR 122(4):730–732

    Google Scholar 

  8. Darevsky IS (1966) Natural parthenogenesis in a polymorphic group of Caucasian rock lizards related to Lacerta saxicola Eversmann. J Ohio Herpetol Soc 5(4):115–152

  9. Darevsky IS, Uzell TM, Kupriyanova LA, Danielyan FD (1973) Triploid hybrid males in sympatric populations of some parthenogenetic and bisexual species of rock lizards of the genus Lacerta. Bull Mosc Soc Nat 78:48–58

    Google Scholar 

  10. Engreitz JM, Agarwala V, Mirny LA (2012) Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease. PLoS One 7:e44196

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ford CE, Hamerton JL (1956) A colchicine hypotonic citrate squash sequence for mammalian chromosomes. Stain Technol 31(6):247–251

    CAS  PubMed  Google Scholar 

  12. Freitas S, Rocha S, Campos J, Ahmadzadeh F, Corti C, Sillero N, Ilgaz C, Kumlutaş Y, Arakelyan M, Harris DJ, Carreteroa MA (2016) Parthenogenesis through the ice ages: a biogeographic analysis of Caucasian rock lizards (genus Darevskia). Mol Phylogenet Evol 102:117–127

    PubMed  Google Scholar 

  13. Fu J (1998) Toward the phylogeny of the family Lacertidae: implications from mitochondrial DNA 12S and 16S gene sequences (Reptilia: Squamata). Mol Phylogenet Evol 9(1):118–130

    CAS  PubMed  Google Scholar 

  14. Fu J, Murphy RW, Darevsky IS (1997) Towards the phylogeny of Caucasian rock lizards: implications from mitochondrial DNA gene sequences. Zool J Linnean Soc 120(4):463–477

    Google Scholar 

  15. Fu S, Lv Z, Guo X, Zhang X, Han F (2013) Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J Geneti Genomics 40(8):413–420

    Google Scholar 

  16. Galoyan EA, Tsellarius EY, Arakelyan MS (2019) Friend-or-foe? Behavioural evidence suggests interspecific discrimination leading to low probability of hybridization in two coexisting rock lizard species (Lacertidae, Darevskia). Behav Ecol Sociobiol 73(4):46

    Google Scholar 

  17. Giovannotti M, Cerioni PN, Slimani T, Splendiani A, Paoletti A, Fawzi A, Olmo E, Caputo Barucchi V (2017) Cytogenetic characterization of a population of Acanthodactylus lineomaculatus Duméril and Bibron, 1839 (Reptilia, Lacertidae), from southwestern Morocco and insights into sex chromosome evolution. Cytogenet Genome Res 153(2):86–95

    PubMed  Google Scholar 

  18. Gorman GC (1969) New chromosome data for 12 species of lacertid lizards. J Herpetol 3(1–2):49–54

    Google Scholar 

  19. Grechko VV, Ciobanu DG, Darevsky IS, Kosushkin SA, Kramerov DA (2006) Molecular evolution of satellite DNA repeats and speciation of lizards of the genus Darevskia (Sauria: Lacertidae). Genome 49(10):1297–1307

    CAS  PubMed  Google Scholar 

  20. Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X, Hu Z, Han F (2016) De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet 12(4):e1005997

    PubMed  PubMed Central  Google Scholar 

  21. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR. Nucleic Acids Res 19(17):4780

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kessler KF (1878) Description of Darevskia portschinskii. In: Transcaucasian voyage. Travaux de la Société des Naturalistes de St. Pétersbourg 8(suppl.):200

  23. Kupriyanova LA (1969) Karyological analysis or lizards or the subgenus Archaeolacerta. Tsitologia 11(7):804–814

    Google Scholar 

  24. Kupriyanova LA (1981) Peculiarities of female’s and rare male’s karyotype of unisexual species (Lacerta rostombekovi Dar). In: Problems in Herpetology, pp 79–80

    Google Scholar 

  25. Kupriyanova LA (1986) On karyotype evolution in lizards. Studies in herpetology. Charles University, Prague, pp 85–88

  26. Kupriyanova LA (1989) Cytogenetic evidence for genome interaction in hybrid lacertid lizards. Evolut Ecol Unisexual Vertebrat 236–240

  27. Kupriyanova LA (1994) Structure, localization and stability of chromosomes in karyotype evolution in lizards of the Lacertidae family. Russ J Herpetol 1(2):161–168

    Google Scholar 

  28. Kupriyanova LA (1997) Some cytogenetical regular trends in reticular (hybridogenous) speciation in unisexual lizards (Reptilia: Lacertilia) and other groups of vertebrates. Tsitologiya 39(12):1104–1108

    Google Scholar 

  29. Kupriyanova LA (1999) Genetic variations in hybrid unisexual species and forms of the genus Lacerta (Lacertidae, Reptilia): possible cytogenetic mechanisms, cytogenetics of meiosis in natural polyploid forms. Tsitologiya 41(12):1046–1047

    Google Scholar 

  30. Kupriyanova L (2009) Cytogenetic and genetic trends in the evolution of unisexual lizards. Cytogenet Genome Res 127(2–4):273–279

    CAS  PubMed  Google Scholar 

  31. Liehr T (2009) Fluorescence in situ hybridization (FISH)–application guide. Springer Verlag, Berlin

    Google Scholar 

  32. Liehr T (2017) Fluorescence in situ hybridization (FISH). Springer, Berlin Heidelberg

    Google Scholar 

  33. Mathew CG (1985) The isolation of high molecular weight eukaryotic DNA. Methods Mol Biol 2:31–34

    CAS  PubMed  Google Scholar 

  34. Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG) n among vertebrates. Proc Natl Acad Sci 86(18):7049–7053

    CAS  PubMed  Google Scholar 

  35. Moritz C, Uzzell T, Spolsky C, Hotz H, Darevsky I, Kupriyanova L, Danielyan F (1992) The material ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae). Genetica 87(1):53–62

    CAS  Google Scholar 

  36. Murphy RW, Fu J, MacCulloch RD, Darevsky IS, Kupriyanova LA (2000) A fine line between sex and unisexuality: the phylogenetic constrains on parthenogenesis in lacertid lizards. Zool J Linnean Soc 130(4):527–549

    Google Scholar 

  37. Nagamachi CY, Pieczarka JC, Milhomem SS, O'Brien PC, de Souza AC, Ferguson-Smith MA (2010) Multiple rearrangements in cryptic species of electric knifefish, Gymnotus carapo (Gymnotidae, Gymnotiformes) revealed by chromosome painting. BMC Genet 11(1):28

    PubMed  PubMed Central  Google Scholar 

  38. Nascetti G, Capula M, Capanna E (1982) Chromosome uniformity in Lacertidae: new data on four Italian species. Amphibia-Reptilia 3(2):207–212

    Google Scholar 

  39. Ocalewicz K (2013) Telomeres in fishes. Cytogenet Genome Res 141(2–3):114–125

    CAS  PubMed  Google Scholar 

  40. Odierna G, Caprigilone T, Kupriyanova LA, Olmo E (1993) Further data on sex chromosomes of Lacertidae and a hypothesis on their evolutionary trend. Amphibia-Reptilia 14(1):1–11

    Google Scholar 

  41. Odierna G, Aprea G, Arribas OJ, Capriglione T, Caputo V, Olmo E (1996) The karyology of the Iberian rock lizards. Herpetologica 52(4):542–550

    Google Scholar 

  42. Olmo E, Cobror O, Morescalchi A, Odierna G (1984) Homomorphic sex chromosomes in the lacertid lizard Takydromus sexlineatus. Heredity 53(2):457–459

    Google Scholar 

  43. Olmo E, Odierna G, Cobror O (1986) C-band variability and phylogeny of Lacertidae. Genetica 71(1):63–74

    Google Scholar 

  44. Omelchenko AV, Girnyk AE, Osipov FA, Vergun AA, Petrosyan VG, Danielyan FD, Arakelyan MS, Ryskov AP (2016) Genetic differentiation among natural populations of the lizard complex Darevskia raddei as inferred from genome microsatellite marking. Russ J Genet 52(2):231–235

    CAS  Google Scholar 

  45. Othman MAK, Lier A, Junker S, Kempf P, Dorka F, Gebhart E, Sheth FJ, Grygalewicz B, Bhatt S, Weise A, Mrasek K, Liehr T, Manvelyan M (2012) Does positioning of chromosomes 8 and 21 in interphase drive t(8;21) in acute myelogenous leukemia? BioDiscovery 4:e8934

    Google Scholar 

  46. Qumsiyeh MB (1994) Evolution of number and morphology of mammalian chromosomes. J Hered 85:455–465

    CAS  PubMed  Google Scholar 

  47. Redi CA, Garagna S, Capanna E (1989) Satellite DNA and chromosome translocation: a hypothesis regarding Robertsonian chromosome formation. Rend Fis Acc Lincei 83:319–326

    Google Scholar 

  48. Rojo Oróns V (2015) Cytogenetic and molecular characterization of lacertid lizard species from the Iberian Peninsula. Ph.D. Thesis. Universidade da Coruña, Coruña, Spain

  49. Rovatsos M, Vukić J, Mrugała A, Suwala G, Lymberakis P, Kratochvíl L (2019) Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards. Sci Rep 9(1):1–9

    CAS  Google Scholar 

  50. Ryskov AP, Osipov FA, Omelchenko AV, Semyenova SK, Girnyk AE, Kochagin VI, Vergun AA, Murphy RW (2017) The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi. PLoS One 12(9):e0185161

    PubMed  PubMed Central  Google Scholar 

  51. Spangenberg V, Arakelyan M, Galoyan E, Matveevsky S, Petrosyan R, Bogdanov Y, Danielyan F, Kolomiets O (2017) Reticulate evolution of the rock lizards: meiotic chromosome dynamics and spermatogenesis in diploid and triploid males of the genus Darevskia. Genes 8(6):149

    PubMed Central  Google Scholar 

  52. Spangenberg V, Arakelyan M, Galoyan E, Pankin M, Petrosyan R, Stepanyan I, Grishaeva T, Danielyan F, Kolomiets O (2019) Extraordinary centromeres: differences in the meiotic chromosomes of two rock lizards species Darevskia portschinskii and Darevskia raddei. PeerJ 7:e6360

    PubMed  PubMed Central  Google Scholar 

  53. Spangenberg V, Arakelyan M, Cioffi M, Liehr T, Al-Rikabi A, Martynova E, Stepanyan I, Danielyan F, Galoyan E, Kolomiets O (2020) Сytogenetic mechanisms of unisexuality in rock lizards. Sci Rep 10(1):1–14

    Google Scholar 

  54. Srikulnath K, Matsubara K, Uno Y, Nishida C, Olsson M, Matsuda Y (2014) Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma 123(6):563–575

    PubMed  Google Scholar 

  55. Stepakov A, Galkina S, Bogomaz D, Gaginskaya E, Saifitdinova A (2015) Modified synthesis of 6-carboxyfluorescein (6- FAM): application to probe labeling for conventional cytogenetics. Brit J Appl Sci Technol 7(4):423–428

    Google Scholar 

  56. Suwala G, Altmanová M, Mazzoleni S, Karameta E, Pafilis P, Kratochvíl L, Rovatsos M (2020) Evolutionary variability of W-linked repetitive content in Lacertid lizards. Genes 11(5):531

    CAS  PubMed Central  Google Scholar 

  57. Symonová R, Sember A, Majtánová Z, Ráb P (2015) Characterization of fish genomes by GISH and CGH. Fish Cytogenet. Tech. Ray-Fin Fishes Chondrichthyans. CCR Press, Boca Raton, pp 118–131

    Google Scholar 

  58. Uzzell T, Darevsky IS (1973) The relationships of Lacerta portschinskii and Lacerta raddei. Herpetologica 29(1):1–6

    Google Scholar 

  59. Uzzell T, Darevsky IS (1974) The evidence of the hybrid origin of parthenogenetic Caucasian rock lizards of the Lacerta genus. Zh Obshch Biol 35:553–561

    CAS  PubMed  Google Scholar 

  60. Uzzell T, Darevsky IS (1975) Biochemical evidence for the hybrid origin of the parthenogenetic species of Lacerta saxicola complex (Sauria, Lacertidae) with a discussion of some ecological and evolutionary implications. Copeia 2:204–222

    Google Scholar 

  61. Volobouev V, Pasteur G, Bons J, Guillaume CP, Dutrillaux B (1990) Sex chromosome evolution in reptiles: divergence between two lizards long regarded as sister species, Lacerta vivipara and Lacerta andreanskyi. Genetica 83(1):85–91

    Google Scholar 

  62. Weise A, Bhatt S, Piaszinski K, Kosyakova N, Fan X, Altendorf-Hofmann A, Tanomtong A, Chaveerach A, de Cioffi MB, de Oliveira E, Walther JU, Liehr T, Chaudhuri JP (2016) Chromosomes in a genome-wise order: evidence for metaphase architecture. Mol Cytogenet 9(1):36

    PubMed  PubMed Central  Google Scholar 

  63. Yano CF, Bertollo LAC, Ezaz T, Trifonov V, Sember A, Liehr T, Cioffi MB (2017) Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity 118(3):276–283

    CAS  PubMed  Google Scholar 

  64. Zwick MS, Hanson RE, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ, McKnight TD (1997) A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 40(1):138–142

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the two anonymous reviewers for their suggestions and comments. We are grateful to prof. Yu.F. Bogdanov and our colleagues I.S. Mazheĭka, A.N. Bogomazova, M.A. Lelekova, A.A. Kashintsova, and M. Asikyan for collaboration.

Funding

The reported study was funded by RFBR according to the research project № 17-00-00430 (17-00-00429), budget financing under VIGG RAS State Assignment Contract using equipment of CCU DBS RAS “Genetic polymorphism,” RFBR research project №18-54-05020, SCS MES RA-RFFR 18RF-132. MBC was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Proc. nos 401962/2016-4 and 302449/2018-3), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Proc. No 2018/22033-1), and CAPES/Alexander von Humboldt (Proc. No. 88881.136128/2017-01).

Author information

Affiliations

Authors

Contributions

VS conceived of or designed the study. VS, AAR, TL, MA, IS, EM, and IM performed research. VS, IS, MBC, TG, FD, and OK analyzed the data. VS, MBC, AAR, and TL contributed to new methods. VS, OK, MA, MBC, IS, and EG wrote the paper.

Corresponding author

Correspondence to Victor Spangenberg.

Ethics declarations

The manipulations with the animals followed the international rules of the Manual on Humane Use of Animals in Biomedical Research. All experimental protocols were approved by the Ethics Committee for Animal Research of the Vavilov Institute of General Genetics (protocol No. 3, November 10, 2016) in accordance with the Regulations for Laboratory Practice.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spangenberg, V., Kolomiets, O., Stepanyan, I. et al. Evolution of the parthenogenetic rock lizard hybrid karyotype: Robertsonian translocation between two maternal chromosomes in Darevskia rostombekowi. Chromosoma 129, 275–283 (2020). https://doi.org/10.1007/s00412-020-00744-7

Download citation

Keywords

  • Fluorescence in situ hybridization
  • Robertsonian translocation
  • Parthenogenesis
  • Reticulate evolution
  • Whole-chromosome painting
  • Comparative genomic hybridization
  • Pericentromeric DNA
  • Interstitial telomeric sites