Using human artificial chromosomes to study centromere assembly and function

Abstract

Centromeres are the site of assembly of the kinetochore, which directs chromosome segregation during cell division. Active centromeres are characterized by the presence of nucleosomes containing CENP-A and a specific chromatin environment that resembles that of active genes. Recent work using human artificial chromosomes (HAC) sheds light on the fine balance of different histone post-translational modifications and transcription that exists at centromeres for kinetochore assembly and maintenance. Here, we review the use of HAC technology to understand centromere assembly and function. We put particular emphasis on studies using the alphoidtetO HAC, whose centromere can be specifically modified for epigenetic engineering studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akiyoshi B, Gull K (2013) Evolutionary cell biology of chromosome segregation: insights from trypanosomes. Open biology 3:130023. doi:10.1098/rsob.130023

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance Nature reviews. Molecular cell biology 13:153–167. doi:10.1038/nrm3288

    CAS  PubMed  Google Scholar 

  3. Aldrup-Macdonald ME, Sullivan BA (2014) The past, present, and future of human centromere genomics. Genes 5:33–50

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Alonso A et al (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148. doi:10.1186/gb-2007-8-7-r148

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres Human molecular. Genetics 12:2711–2721. doi:10.1093/hmg/ddg282

    CAS  Google Scholar 

  6. Allshire RC, Ekwall K (2015) Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe Cold Spring Harbor. perspectives in biology 7:a018770. doi:10.1101/cshperspect.a018770

    PubMed  PubMed Central  Google Scholar 

  7. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937. doi:10.1038/nrg2466

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Amano M, Suzuki A, Hori T, Backer C, Okawa K, Cheeseman IM, Fukagawa T (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186:173–182. doi:10.1083/jcb.200903100

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Barnhart MC, Kuich PH, Stellfox ME, Ward JA, Bassett EA, Black BE, Foltz DR (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194:229–243. doi:10.1083/jcb.201012017

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Basu J, Stromberg G, Compitello G, Willard HF, Van Bokkelen G (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33:587–596. doi:10.1093/nar/gki207

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Basu J, Willard HF (2006) Human artificial chromosomes: potential applications and clinical considerations. Pediatr Clin N Am 53:843–853. doi:10.1016/j.pcl.2006.08.013

    Article  Google Scholar 

  12. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412. doi:10.1038/nature05915

    CAS  PubMed  Article  Google Scholar 

  13. Bergmann JH et al (2012a) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125:411–421. doi:10.1242/jcs.090639

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Bergmann JH, Martins NM, Larionov V, Masumoto H, Earnshaw WC (2012b) HACking the centromere chromatin code: insights from human artificial chromosomes Chromosome research. an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 20:505–519. doi:10.1007/s10577-012-9293-0

    CAS  Article  Google Scholar 

  15. Bergmann JH et al (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340. doi:10.1038/emboj.2010.329

    CAS  PubMed  Article  Google Scholar 

  16. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542. doi:10.1126/science.1064027

    CAS  PubMed  Article  Google Scholar 

  17. Black BE (2011) Cleveland DW. Epigenetic centromere propagation and the nature of CENP-a nucleosomes Cell 144:471–479. doi:10.1016/j.cell.2011.02.002

    CAS  PubMed  Google Scholar 

  18. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans Developmental. Cell 2:319–330

    CAS  Google Scholar 

  19. Bodor DL et al (2014) The quantitative architecture of centromeric. chromatin eLife 3:e02137. doi:10.7554/eLife.02137

    PubMed  Google Scholar 

  20. Booth DG et al (2016) 3D-CLEM Reveals that a Major Portion of Mitotic Chromosomes Is Not Chromatin. Mol Cell 64:790–802. doi:10.1016/j.molcel.2016.10.009

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Brinkley BR, Stubblefield E (1966) The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:28–43

    CAS  PubMed  Article  Google Scholar 

  22. Brown KE, Barnett MA, Burgtorf C, Shaw P, Buckle VJ, Brown WR (1994) Dissecting the centromere of the human Y chromosome with cloned telomeric DNA Human molecular. Genetics 3:1227–1237

    CAS  Google Scholar 

  23. Cardinale S et al (2009) Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 20:4194–4204. doi:10.1091/mbc.E09-06-0489

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189:1143–1155. doi:10.1083/jcb.201001013

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Catania S, Allshire RC (2014) Anarchic centromeres: deciphering order from apparent chaos Current opinion in cell. Biology 26:41–50. doi:10.1016/j.ceb.2013.09.004

    CAS  Google Scholar 

  26. Catania S, Pidoux AL, Allshire RC (2015) Sequence features and transcriptional stalling within centromere DNA promote establishment of CENP-A chromatin. PLoS Genet 11:e1004986. doi:10.1371/journal.pgen.1004986

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol 10:1863–1872

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–509

    CAS  PubMed  Article  Google Scholar 

  29. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421

    CAS  PubMed  Article  Google Scholar 

  30. Cottarel G, Shero JH, Hieter P, Hegemann JH (1989) A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol 9:3342–3349

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109:1979–1984. doi:10.1073/pnas.1108705109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface Nature reviews Molecular cell. Biology 9:33–46. doi:10.1038/nrm2310

    CAS  Google Scholar 

  33. Cheeseman IM, Hori T, Fukagawa T, Desai A (2008) KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates Molecular biology of the cell 19:587–594 doi:10.1091/mbc.E07-10-1051

  34. Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P (1991) A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 19:1179–1182

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Desai A, Rybina S, Muller-Reichert T, Shevchenko A, Shevchenko A, Hyman A, Oegema K (2003) KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans Genes & development 17:2421–2435. doi:10.1101/gad.1126303

    CAS  Article  Google Scholar 

  36. Dinant C, Houtsmuller AB, Vermeulen W (2008) Chromatin structure and DNA damage repair. Epigenetics Chromatin 1:9. doi:10.1186/1756-8935-1-9

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P (1993) Identification of essential components of the S. cerevisiae kinetochore. Cell 73:761–774

    CAS  PubMed  Article  Google Scholar 

  38. Drinnenberg IA, de Young D, Henikoff S, Malik HS (2014) Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects eLife 3 doi:10.7554/eLife.03676

  39. du Sart D et al (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite. DNA Nature genetics 16:144–153. doi:10.1038/ng0697-144

    PubMed  Article  Google Scholar 

  40. Duffy S et al (2016) Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. Proc Natl Acad Sci U S A 113:9967–9976. doi:10.1073/pnas.1611839113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Dunleavy EM et al (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497. doi:10.1016/j.cell.2009.02.040

    CAS  PubMed  Article  Google Scholar 

  42. Earnshaw WC, Cooke CA (1989) Proteins of the inner and outer centromere of mitotic chromosomes Genome / National Research Council. Canada = Genome / Conseil national de recherches Canada 31:541–552

    CAS  Article  Google Scholar 

  43. Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric. Chromosome Chromosoma 92:290–296

    CAS  PubMed  Article  Google Scholar 

  44. Earnshaw WC, Ratrie H 3rd, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12

    CAS  PubMed  Article  Google Scholar 

  45. Earnshaw WC, Rattner JB (1991) The use of autoantibodies in the study of nuclear and chromosomal organization. Methods Cell Biol 35:135–175

    CAS  PubMed  Article  Google Scholar 

  46. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    CAS  PubMed  Article  Google Scholar 

  47. Ebersole T et al (2005) Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res 33:e130. doi:10.1093/nar/gni129

    PubMed  PubMed Central  Article  Google Scholar 

  48. Ebersole TA, Ross A, Clark E, McGill N, Schindelhauer D, Cooke H, Grimes B (2000) Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum Mol Genet 9:1623–1631

    CAS  PubMed  Article  Google Scholar 

  49. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome Nature. Biotechnology 28:817–825. doi:10.1038/nbt.1662

    CAS  Google Scholar 

  50. Fachinetti D et al (2013) A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 15:1056–1066. doi:10.1038/ncb2805

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Farr CJ, Bayne RA, Kipling D, Mills W, Critcher R, Cooke HJ (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14:5444–5454

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97. doi:10.1126/science.1150944

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Foltz DR et al (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484. doi:10.1016/j.cell.2009.02.039

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex Nature. cell biology 8:458–469. doi:10.1038/ncb1397

    CAS  PubMed  Google Scholar 

  55. Frias C, Pampalona J, Genesca A, Tusell L (2012) Telomere dysfunction and genome instability. Front Biosci 17:2181–2196

    Article  CAS  Google Scholar 

  56. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ 3rd (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10:2067–2078

    CAS  PubMed  Article  Google Scholar 

  57. Fujita R et al (2015) Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Res 43:4909–4922. doi:10.1093/nar/gkv405

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1 Developmental. Cell 12:17–30. doi:10.1016/j.devcel.2006.11.002

    CAS  Google Scholar 

  59. Fukagawa T, Earnshaw WC (2014a) The centromere: chromatin foundation for the kinetochore machinery Developmental. Cell 30:496–508. doi:10.1016/j.devcel.2014.08.016

    CAS  Google Scholar 

  60. Fukagawa T, Earnshaw WC (2014b) Neocentromeres Current biology : CB 24:R946–R947. doi:10.1016/j.cub.2014.08.032

    CAS  PubMed  Article  Google Scholar 

  61. Gartenberg M (2009) Heterochromatin and the cohesion of sister chromatids Chromosome research. an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 17:229–238. doi:10.1007/s10577-008-9012-z

    CAS  Article  Google Scholar 

  62. Goldberg IG, Sawhney H, Pluta AF, Warburton PE, Earnshaw WC (1996) Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol 16:5156–5168

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160:25–39. doi:10.1083/jcb.200210005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Grimes BR, Schindelhauer D, McGill NI, Ross A, Ebersole TA, Cooke HJ (2001) Stable gene expression from a mammalian artificial chromosome. EMBO Rep 2:910–914. doi:10.1093/embo-reports/kve187

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355. doi:10.1038/ng0497-345

    CAS  PubMed  Article  Google Scholar 

  66. Hegemann JH, Fleig UN (1993) The centromere of budding yeast BioEssays : news and reviews in molecular, cellular and developmental. Biology 15:451–460. doi:10.1002/bies.950150704

    CAS  Google Scholar 

  67. Heller R, Brown KE, Burgtorf C, Brown WR (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proceedings of the National. Academy of Sciences of the United States of America 93:7125–7130

    CAS  Article  Google Scholar 

  68. Henning KA, Novotny EA, Compton ST, Guan XY, Liu PP, Ashlock MA (1999) Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci U S A 96:592–597

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Hill A, Bloom K (1987) Genetic manipulation of centromere function. Mol Cell Biol 7:2397–2405

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Hori T et al (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052. doi:10.1016/j.cell.2008.10.019

    CAS  PubMed  Article  Google Scholar 

  71. Hori T, Shang WH, Takeuchi K, Fukagawa T (2013) The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 200:45–60. doi:10.1083/jcb.201210106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Hori T et al (2014) Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev Cell 29:740–749. doi:10.1016/j.devcel.2014.05.001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Hudson DF et al (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 141:309–319

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Iida Y et al (2014) Bi-HAC vector system toward gene and cell therapy ACS synthetic. Biology 3:83–90. doi:10.1021/sb400166j

    CAS  Google Scholar 

  75. Ikeno M et al (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439. doi:10.1038/nbt0598-431

    CAS  PubMed  Article  Google Scholar 

  76. Ikeno M, Inagaki H, Nagata K, Morita M, Ichinose H, Okazaki T (2002) Generation of human artificial chromosomes expressing naturally controlled guanosine triphosphate cyclohydrolase I gene Genes to cells. devoted to molecular & cellular mechanisms 7:1021–1032

    CAS  Article  Google Scholar 

  77. Ikeno M, Masumoto H, Okazaki T (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21 Human molecular. Genetics 3:1245–1257

    CAS  Google Scholar 

  78. Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176:795–805. doi:10.1083/jcb.200701066

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Jokelainen PT (1967) The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J Ultrastruct Res 19:19–44

    CAS  PubMed  Article  Google Scholar 

  80. Kagansky A et al (2009) Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324:1716–1719. doi:10.1126/science.1172026

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Kanellopoulou C et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501. doi:10.1101/gad.1248505

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Kapoor M et al (1998) The cenpB gene is not essential in mice. Chromosoma 107:570–576

    CAS  PubMed  Article  Google Scholar 

  83. Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function Trends in genetics : TIG 13:489–496

    CAS  PubMed  Google Scholar 

  84. Kazuki Y et al (2011) Refined human artificial chromosome vectors for gene therapy and animal transgenesis. Gene Ther 18:384–393. doi:10.1038/gt.2010.147

    CAS  PubMed  Article  Google Scholar 

  85. Kim JH et al (2011) Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proc Natl Acad Sci U S A 108:20048–20053. doi:10.1073/pnas.1114483108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Kim JH et al. (2016) Development of a novel HAC-based "gain of signal" quantitative assay for measuring chromosome instability (CIN) in cancer cells

  87. Kononenko AV et al. (2014) A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function Nucleic acids research 42 doi:10.1093/nar/gku870

  88. Kouprina N, Earnshaw WC, Masumoto H, Larionov V (2013) A new generation of human artificial chromosomes for functional genomics and gene therapy Cellular and molecular life sciences. CMLS 70:1135–1148. doi:10.1007/s00018-012-1113-3

    CAS  PubMed  Article  Google Scholar 

  89. Kouprina N et al (2003) Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic Acids Res 31:922–934

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Kouprina N, Larionov V (2016) Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 125:621–632. doi:10.1007/s00412-016-0588-3

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Kouprina N et al (2012) Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere ACS synthetic. Biology 1:590–601. doi:10.1021/sb3000436

    CAS  Google Scholar 

  92. Kouprina N, Tomilin AN, Masumoto H, Earnshaw WC, Larionov V (2014) Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert opinion on drug delivery 11:517–535. doi:10.1517/17425247.2014.882314

    CAS  PubMed  Article  Google Scholar 

  93. Kugou K, Hirai H, Masumoto H, Koga A (2016) Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys. Sci Rep 6:27833. doi:10.1038/srep27833

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Kwon MS, Hori T, Okada M, Fukagawa T (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 18:2155–2168. doi:10.1091/mbc.E07-01-0045

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Lahtz C, Pfeifer GP (2011) Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol 3:51–58. doi:10.1093/jmcb/mjq053

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Lee HS et al (2013) A new assay for measuring chromosome instability (CIN) and identification of drugs that elevate CIN in cancer cells. BMC Cancer 13:252. doi:10.1186/1471-2407-13-252

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Lee HS et al (2016) Effects of Anticancer Drugs on Chromosome Instability and New Clinical Implications for Tumor-Suppressing Therapies. Cancer Res 76:902–911. doi:10.1158/0008-5472.CAN-15-1617

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Liu H, Qu Q, Warrington R, Rice A, Cheng N, Yu H (2015) Mitotic Transcription Installs Sgo1 at Centromeres to Coordinate Chromosome Segregation Molecular. Cell 59:426–436. doi:10.1016/j.molcel.2015.06.018

    CAS  Google Scholar 

  99. Liu ST, Rattner JB, Jablonski SA, Yen TJ (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175:41–53. doi:10.1083/jcb.200606020

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Lo AW et al (2001) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–2096. doi:10.1093/emboj/20.8.2087

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Luykx P (1965) The structure of the kinetochore in meiosis and mitosis in Urechis eggs. Exp Cell Res 39:643–657

    CAS  PubMed  Article  Google Scholar 

  102. Maddox PS, Hyndman F, Monen J, Oegema K, Desai A (2007) Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176:757–763. doi:10.1083/jcb.200701065

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Maiato H, Sampaio P, Sunkel CE (2004) Microtubule-associated proteins and their essential roles during mitosis. Int Rev Cytol 241:53–153. doi:10.1016/S0074-7696(04)41002-X

    PubMed  Article  Google Scholar 

  104. Mandegar MA et al (2011) Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum Mol Genet 20:2905–2913. doi:10.1093/hmg/ddr144

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Martins NM, Bergmann JH, Shono N, Kimura H, Larionov V, Masumoto H, Earnshaw WC (2016) Epigenetic engineering shows that a human centromere resists silencing mediated by H3K27me3/K9me3. Mol Biol Cell 27:177–196. doi:10.1091/mbc.E15-08-0605

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Masumoto H, Ikeno M, Nakano M, Okazaki T, Grimes B, Cooke H, Suzuki N (1998) Assay of centromere function using a human artificial. chromosome Chromosoma 107:406–416

    CAS  PubMed  Article  Google Scholar 

  107. Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973

    CAS  PubMed  Article  Google Scholar 

  108. Mejia JE, Larin Z (2000) The assembly of large BACs by in vivo recombination. Genomics 70:165–170. doi:10.1006/geno.2000.6372

    CAS  PubMed  Article  Google Scholar 

  109. Mejia JE, Willmott A, Levy E, Earnshaw WC, Larin Z (2001) Functional complementation of a genetic deficiency with human artificial chromosomes. Am J Hum Genet 69:315–326. doi:10.1086/321977

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Merry DE, Pathak S, Hsu TC (1985) Brinkley BR. Anti-kinetochore antibodies: use as probes for inactive centromeres American journal of human genetics 37:425–430

    CAS  PubMed  Google Scholar 

  111. Mills W, Critcher R, Lee C, Farr CJ (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 8:751–761

    CAS  PubMed  Article  Google Scholar 

  112. Molina O, Carmena M, Maudlin IE, Earnshaw WC (2016a) PREditOR: a synthetic biology approach to removing heterochromatin from cells Chromosome research. an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 24:495–509. doi:10.1007/s10577-016-9539-3

    CAS  Article  Google Scholar 

  113. Molina O et al (2016b) Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nat Commun 7:13334. doi:10.1038/ncomms13334

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Moralli D, Monaco ZL (2015) Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology Chromosome research : an international journal on the molecular. supramolecular and evolutionary aspects of chromosome biology 23:105–110. doi:10.1007/s10577-014-9456-2

    CAS  Article  Google Scholar 

  115. Moralli D, Simpson KM, Wade-Martins R, Monaco ZL (2006) A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO Rep 7:911–918. doi:10.1038/sj.embor.7400768

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast Nature 305:189–193

    CAS  PubMed  Google Scholar 

  117. Nakano M et al (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522. doi:10.1016/j.devcel.2008.02.001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Neil DL, Villasante A, Fisher RB, Vetrie D, Cox B, Tyler-Smith C (1990) Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors. Nucleic Acids Res 18:1421–1428

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T (2013) CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32:424–436. doi:10.1038/emboj.2012.348

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Nishino T et al (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487–501. doi:10.1016/j.cell.2011.11.061

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SI, Watanabe Y (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4:89–93. doi:10.1038/ncb739

    CAS  PubMed  Article  Google Scholar 

  122. Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153:1209–1226

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Ohzeki J et al (2012) Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J 31:2391–2402. doi:10.1038/emboj.2012.82

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Ohzeki J, Larionov V, Earnshaw WC, Masumoto H (2015) Genetic and epigenetic regulation of centromeres: a look at HAC formation Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome. Biology 23:87–103. doi:10.1007/s10577-015-9470-z

    CAS  Google Scholar 

  125. Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775. doi:10.1083/jcb.200207112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Ohzeki J et al (2016) KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation Developmental. Cell 37:413–427. doi:10.1016/j.devcel.2016.05.006

    CAS  Google Scholar 

  127. Okada M et al (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres Nature. cell biology 8:446–457. doi:10.1038/ncb1396

    CAS  PubMed  Google Scholar 

  128. Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR, Larionov V, Masumoto H (2007) CENP-B controls centromere formation depending on the chromatin context. Cell 131:1287–1300. doi:10.1016/j.cell.2007.10.045

    CAS  PubMed  Article  Google Scholar 

  129. Okamoto Y, Nakano M, Ohzeki J, Larionov V, Masumoto H (2007) A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 26:1279–1291. doi:10.1038/sj.emboj.7601584

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Olszak AM et al (2011) Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol 13:799–808. doi:10.1038/ncb2272

    CAS  PubMed  Article  Google Scholar 

  131. Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T (2015) A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome. Biology 23:111–133. doi:10.1007/s10577-014-9459-z

    CAS  Google Scholar 

  132. Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A 88:3734–3738

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    CAS  PubMed  Article  Google Scholar 

  134. Pearson CG, Yeh E, Gardner M, Odde D, Salmon ED, Bloom K (2004) Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Current biology : CB 14:1962–1967. doi:10.1016/j.cub.2004.09.086

    CAS  PubMed  Article  Google Scholar 

  135. Perez-Castro AV, Shamanski FL, Meneses JJ, Lovato TL, Vogel KG, Moyzis RK, Pedersen R (1998) Centromeric protein B null mice are viable with no apparent abnormalities. Dev Biol 201:135–143. doi:10.1006/dbio.1998.9005

    CAS  PubMed  Article  Google Scholar 

  136. Perpelescu M, Fukagawa T (2011) The ABCs of CENPs Chromosoma 120:425–446. doi:10.1007/s00412-011-0330-0

    PubMed  Article  Google Scholar 

  137. Pertile MD, Graham AN, Choo KH, Kalitsis P (2009) Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res 19:2202–2213. doi:10.1101/gr.092080.109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Peters AH et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    CAS  PubMed  Article  Google Scholar 

  139. Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270:1591–1594

    CAS  PubMed  Article  Google Scholar 

  140. Pluta AF, Saitoh N, Goldberg I, Earnshaw WC (1992) Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere. J Cell Biol 116:1081–1093

    CAS  PubMed  Article  Google Scholar 

  141. Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM (2011) CENP-C is a structural platform for kinetochore assembly Current biology : CB 21:399–405. doi:10.1016/j.cub.2011.02.005

    CAS  PubMed  Google Scholar 

  142. Quenet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere eLife 3:e03254. doi:10.7554/eLife.03254

    PubMed  Google Scholar 

  143. Ribeiro SA et al (2010) A super-resolution map of the vertebrate kinetochore. Proc Natl Acad Sci U S A 107:10484–10489. doi:10.1073/pnas.1002325107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349. doi:10.1083/jcb.201404097

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Roy B, Sanyal K (2011) Diversity in requirement of genetic and epigenetic factors for centromere function in fungi Eukaryotic. Cell 10:1384–1395. doi:10.1128/EC.05165-11

    CAS  Google Scholar 

  146. Saffery R, Choo KH (2002) Strategies for engineering human chromosomes with therapeutic potential. The journal of gene medicine 4:5–13

    PubMed  Article  Google Scholar 

  147. Saffery R, Irvine DV, Griffiths B, Kalitsis P, Wordeman L, Choo KH (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins Human molecular. Genetics 9:175–185

    CAS  Google Scholar 

  148. Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28:2511–2531. doi:10.1038/emboj.2009.173

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Scott KC, White CV, Willard HF (2007) An RNA polymerase III-dependent heterochromatin barrier at fission yeast centromere 1. PLoS One 2:e1099. doi:10.1371/journal.pone.0001099

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E, Musacchio A (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Current biology : CB 21:391–398. doi:10.1016/j.cub.2010.12.039

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. Schalch T, Steiner FA (2016) Structure of centromere chromatin: from nucleosome to chromosomal architecture Chromosoma doi:10.1007/s00412-016-0620-7

  152. Schoeftner S, Blasco MA (2010) Chromatin regulation and non-coding RNAs at mammalian telomeres Seminars in cell & developmental. Biology 21:186–193. doi:10.1016/j.semcdb.2009.09.015

    CAS  Google Scholar 

  153. Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115. doi:10.1126/science.1065042

    CAS  PubMed  Article  Google Scholar 

  154. Shono N et al (2015) CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly. J Cell Sci 128:4572–4587. doi:10.1242/jcs.180786

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Silva MC, Bodor DL, Stellfox ME, Martins NM, Hochegger H, Foltz DR, Jansen LE (2012) Cdk activity couples epigenetic centromere inheritance to cell cycle progression Developmental. Cell 22:52–63. doi:10.1016/j.devcel.2011.10.014

    CAS  Google Scholar 

  156. Slee RB et al (2012) Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene 31:3244–3253. doi:10.1038/onc.2011.502

    CAS  PubMed  Article  Google Scholar 

  157. Spencer F, Gerring SL, Connelly C, Hieter P (1990) Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124:237–249

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Spencer F, Hieter P (1992) Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:8908–8912

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. Spiller F, Medina-Pritchard B, Abad MA, Wear MA, Molina O, Earnshaw WC, Jeyaprakash AA (2017) Molecular basis for Cdk1-regulated timing of Mis18 complex assembly and CENP-A deposition. EMBO Rep. doi:10.15252/embr.201643564

  160. Stimpson KM, Matheny JE, Sullivan BA (2012) Dicentric chromosomes: unique models to study centromere function and inactivation Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome. Biology 20:595–605. doi:10.1007/s10577-012-9302-3

    CAS  Google Scholar 

  161. Sugata N et al (2000) Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere--kinetochore complexes. Hum Mol Genet 9:2919–2926

    CAS  PubMed  Article  Google Scholar 

  162. Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083. doi:10.1038/nsmb845

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Sullivan BA, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4:2189–2197

    CAS  PubMed  Article  Google Scholar 

  164. Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228. doi:10.1038/3024

    CAS  PubMed  Article  Google Scholar 

  165. Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    CAS  PubMed  Article  Google Scholar 

  166. Sullivan LL, Boivin CD, Mravinac B, Song IY, Sullivan BA (2011) Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells Chromosome research. an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 19:457–470. doi:10.1007/s10577-011-9208-5

    CAS  Article  Google Scholar 

  167. Sumer H, Saffery R, Wong N, Craig JM, Choo KH (2004) Effects of scaffold/matrix alteration on centromeric function and gene expression. J Biol Chem 279:37631–37639. doi:10.1074/jbc.M401051200

    CAS  PubMed  Article  Google Scholar 

  168. Suzuki N, Nishii K, Okazaki T, Ikeno M (2006) Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Biol Chem 281:26615–26623. doi:10.1074/jbc.M603053200

    CAS  PubMed  Article  Google Scholar 

  169. Takahashi K, Murakami S, Chikashige Y, Funabiki H, Niwa O, Yanagida M (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3:819–835

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Takahashi K, Murakami S, Chikashige Y, Niwa O, Yanagida M (1991) A large number of tRNA genes are symmetrically located in fission yeast centromeres. J Mol Biol 218:13–17

    CAS  PubMed  Article  Google Scholar 

  171. Takiguchi M et al (2014) A novel and stable mouse artificial chromosome vector ACS. Synth Biol 3:903–914. doi:10.1021/sb3000723

    CAS  Article  Google Scholar 

  172. Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991. doi:10.1073/pnas.0407154101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Current biology : CB 7:897–900

    CAS  PubMed  Article  Google Scholar 

  174. Voullaire LE, Slater HR, Petrovic V, Choo KH (1993) A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52:1153–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Wakai M, Abe S, Kazuki Y, Oshimura M, Ishikawa F (2014) A human artificial chromosome recapitulates the metabolism of native telomeres in mammalian cells. PLoS One 9:e88530. doi:10.1371/journal.pone.0088530

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  176. Warburton PE (2001) Epigenetic analysis of kinetochore assembly on variant human centromeres. Trends in genetics : TIG 17:243–247

    CAS  PubMed  Article  Google Scholar 

  177. Warburton PE et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Current biology : CB 7:901–904

    CAS  PubMed  Article  Google Scholar 

  178. Waye JS, Willard HF (1989) Chromosome specificity of satellite DNAs: short- and long-range organization of a diverged dimeric subset of human alpha satellite from chromosome 3. Chromosoma 97:475–480

    CAS  PubMed  Article  Google Scholar 

  179. Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37:524–532

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Willard HF (1990) Centromeres of mammalian chromosomes. Trends in genetics : TIG 6:410–416

    CAS  PubMed  Article  Google Scholar 

  181. Yamagishi Y, Sakuno T, Shimura M, Watanabe Y (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–255. doi:10.1038/nature07217

    CAS  PubMed  Article  Google Scholar 

  182. Young DJ, Nimmo ER, Allshire RC (1998) A Schizosaccharomyces pombe artificial chromosome large DNA cloning system. Nucleic Acids Res 26:5052–5060

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Oscar Molina or William C. Earnshaw.

Ethics declarations

Funding

This work was supported by the Wellcome Trust, of which W.C.E. is a Principal Research Fellow (grant number 073915). O.M. was funded by the European Molecular Biology Organization (long-term EMBO fellowship; ALTF-453-2012). The Intramural Research Program of the NIH, NCI Center for Cancer Research (V.L. and N.K.) and MEXT KAKENHI grant numbers 23247030, 23114008 and the Kazusa DNA Research Institute Foundation (H.M.).

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molina, O., Kouprina, N., Masumoto, H. et al. Using human artificial chromosomes to study centromere assembly and function. Chromosoma 126, 559–575 (2017). https://doi.org/10.1007/s00412-017-0633-x

Download citation

Keywords

  • Human artificial chromosomes
  • Centromere
  • Kinetochore
  • CENP-A
  • Mitosis