Advertisement

Chromosoma

, Volume 126, Issue 5, pp 633–644 | Cite as

Post-meiotic B chromosome expulsion, during spermiogenesis, in two grasshopper species

  • Josefa Cabrero
  • María Martín-Peciña
  • Francisco J. Ruiz-Ruano
  • Ricardo Gómez
  • Juan Pedro M. CamachoEmail author
Original Article

Abstract

Most supernumerary (B) chromosomes are parasitic elements carrying out an evolutionary arms race with the standard (A) chromosomes. A variety of weapons for attack and defense have evolved in both contending elements, the most conspicuous being B chromosome drive and A chromosome drive suppression. Here, we show for the first time that most microspermatids formed during spermiogenesis in two grasshopper species contain expulsed B chromosomes. By using DNA probes for B-specific satellite DNAs in Eumigus monticola and Eyprepocnemis plorans, and also 18S rDNA in the latter species, we were able to count the number of B chromosomes in standard spermatids submitted to fluorescence in situ hybridization, as well as visualizing B chromosomes inside most microspermatids. In E. plorans, the presence of B-carrying microspermatids in 1B males was associated with a significant decrease in the proportion of B-carrying standard spermatids. The fact that this decrease was apparent in elongating spermatids but not in round ones demonstrates that meiosis yields 1:1 proportions of 0B and 1B spermatids and hence that B elimination takes place post-meiotically, i.e., during spermiogenesis, implying a 5–25% decrease in B transmission rate. In E. monticola, the B chromosome is mitotically unstable and B number varies between cells within a same individual. A comparison of B frequency between round and elongating spermatids of a same individual revealed a significant 12.3% decrease. We conclude that B chromosome elimination during spermiogenesis is a defense weapon of the host genome to get rid of parasitic chromosomes.

Keywords

FISH Micronucleus Microspermatids Parasitic Satellite DNA 

Notes

Acknowledgments

We thank M. Teruel and J.D. Alché for their help to obtain the electron microscope photograph in Fig. 2f. This study was supported by a grant from the Spanish Secretaría de Estado de Investigación, Desarrollo e Innovación (CGL2015-70750-P) and was partially performed by FEDER funds.

Compliance with ethical standards

Integrity of research

All experiments comply with the current Spanish laws.

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Abdel-Haleem AA, Sharaf HM, El-Kabbany AI (2009) New record of B-chromosome through meiosis in the Egyptian locust Anacridium aegyptium (Acrididae) with indication to its origin. J King Saud Univ Sci 21:163–166. doi: 10.1016/j.jksus.2009.10.002 CrossRefGoogle Scholar
  2. Avdulow NP (1933) On the additional chromosomes in maize. Bull Appl Bot Ser 2:101–130Google Scholar
  3. Bauer H, Beermann W (1952) Der chromosomencyclus der Orthocladiinen (Nematocera, Diptera). Z Naturforsch 7:557–563CrossRefGoogle Scholar
  4. Bidau CJ (1986) Effects on cytokinesis and sperm formation of a B-isochromosome in Metaleptea brevicornis adspersa (Acridinae, Acrididae). Caryologia 39:165–177. doi: 10.1080/00087114.1986.10797778 CrossRefGoogle Scholar
  5. Bidau CJ (1987) Influence of a rare unstable B-chromosome on chiasma frequency and nonhaploid sperm production in Dichroplus pratensis (Melanoplinae, Acrididae). Genetica 73:201–210. doi: 10.1007/BF00055275 CrossRefGoogle Scholar
  6. Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Belknap Press of Harvard University Press, CambridgeCrossRefGoogle Scholar
  7. Cabrero J, Teruel M, Carmona FD, Jiménez R, Camacho JPM (2007) Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 119:135–142. doi: 10.1159/000109630 CrossRefPubMedGoogle Scholar
  8. Cabrero J, Bakkali M, Navarro-Domínguez B, Ruíz-Ruano FJ, Martín-Blázquez R, López-León MD, Camacho JPM (2013) The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species. Chromosom Res 21:393–406. doi: 10.1007/s10577-013-9367-7 CrossRefGoogle Scholar
  9. Cabrero J, López-León MD, Ruíz-Estévez M, Gómez R, Petitpierre E, Rufas JS, Massa B, Kamel Ben Halima M, Camacho JPM (2014) B1 was the ancestor B chromosome variant in the western Mediterranean area in the grasshopper Eyprepocnemis plorans. Cytogenet Genome Res 142:54–58. doi: 10.1159/000356052 CrossRefPubMedGoogle Scholar
  10. Calvente A, Viera A, Parra MT, De La Fuente R, Suja JA, Page J, Santos JL, García de la Vega C, Barbero JL, Rufas JS (2013) Dynamics of cohesin subunits in grasshopper meiotic divisions. Chromosoma 122:77–91. doi: 10.1007/s00412-012-0393-6 CrossRefPubMedGoogle Scholar
  11. Camacho JPM (2005) B chromosomes. In: Gregory TR (ed) The evolution of the genome. Academic Press, New York, pp 223–286CrossRefGoogle Scholar
  12. Camacho JPM, Carballo AR, Cabrero J (1980) The B-chromosome system of the grasshopper Eyprepocnemis plorans subsp. plorans (Charpentier). Chromosoma 80:163–176. doi: 10.1007/BF00286298 CrossRefGoogle Scholar
  13. Camacho JPM, Shaw MW, López-León MD, Pardo MC, Cabrero J (1997) Population dynamics of a selfish B chromosome neutralized by the standard genome in the grasshopper Eyprepocnemis plorans. Am Nat 149:1030–1050. doi: 10.1086/286037 CrossRefPubMedGoogle Scholar
  14. Camacho JPM, Sharbel TF, Beukeboom LW (2000) B-chromosome evolution. Phil Trans Roy Soc Lond B 355:163–178. doi: 10.1098/rstb.2000.0556 CrossRefGoogle Scholar
  15. Camacho JPM, Perfectti F, Teruel M, López-León MD, Cabrero J (2004) The odd-even effect in mitotically unstable B chromosomes in grasshoppers. Cytogenet Genome Res 106:325–331. doi: 10.1159/000079307 CrossRefPubMedGoogle Scholar
  16. Camacho JPM, Cabrero J, López-León MD, Cabral-de-Mello DC, Ruiz-Ruano FJ (2015a) Grasshoppers (Orthoptera). In: Sharakhov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, pp 381–438Google Scholar
  17. Camacho JPM, Ruiz-Ruano FJ, Martín-Blázquez R, López-León MD, Cabrero J, Lorite P, Cabral-de-Mello DC, Bakkali M (2015b) A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. Chromosoma 124:263–275. doi: 10.1007/s00412-014-0499-0 CrossRefPubMedGoogle Scholar
  18. Carlton PM, Cande WZ (2002) Telomeres act autonomously in maize to organize the meiotic bouquet from a semipolarized chromosome orientation. J Cell Biol 157:231–242. doi: 10.1083/jcb.200110126 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chiavarino AM, Rosato M, Manzanero S, Jiménez G, González-Sánchez M, Puertas MJ (2000) Chromosome nondisjunction and instabilities in tapetal cells are affected by B chromosomes in maize. Genetics 155:889–897PubMedPubMedCentralGoogle Scholar
  20. Darlington CD, Upcott MB (1941) The activity of inert chromosomes in Zea mays. J Genet 41:275–296CrossRefGoogle Scholar
  21. Del Priore L, Pigozzi MI (2014) Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch. Chromosoma 123:293–302. doi: 10.1007/s00412-014-0451-3 CrossRefPubMedGoogle Scholar
  22. Elston RN (1963) Nuclear budding and micronuclei formation in human bone marrow, skin and fascia lata cells in vitro and in oral mucosa cells in vivo. Acta Pathol Microbiol Immunol Scand B 59:195–199CrossRefGoogle Scholar
  23. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132. doi: 10.1093/mutage/geq052 CrossRefPubMedGoogle Scholar
  24. Finch KA, Fonseka KGL, Abogrein A, Ioannou D, Handyside AH, Thornhill AR, Hickson N, Griffin DK (2008) Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod 23:1263–1270. doi: 10.1093/humrep/den112 CrossRefPubMedGoogle Scholar
  25. Frank SA (2000) Polymorphism of attack and defense. Trends Ecol Evol 15:167–171. doi: 10.1016/S0169-5347(99)01814-5 CrossRefPubMedGoogle Scholar
  26. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brüβ KCJ, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438. doi: 10.1105/tpc.105.034249 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gernand D, Rutten T, Pickering R, Houben A (2006) Elimination of chromosomes in Hordeum vulgare x H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet Genome Res 114:169–174. doi: 10.1159/000093334 CrossRefPubMedGoogle Scholar
  28. Goday C, Esteban MR (2001) Chromosome elimination in sciarid flies. BioEssays 23:242–250. doi: 10.1002/1521-1878(200103)23:3<242::AID-BIES1034>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  29. Goday C, Ruiz MF (2002) Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J Cell Sci 115:4765–4775. doi: 10.1242/jcs.00172 CrossRefPubMedGoogle Scholar
  30. Hakansson A (1948) Embryology of Poa alpina plants with accessory chromosomes. Hereditas 34:233–247. doi: 10.1111/j.1601-5223.1948.tb02838.x CrossRefGoogle Scholar
  31. Hayman DL, Martin PG, Waller PF (1969) Parallel mosaicism of supernumerary chromosomes and sex chromosomes in Echymipera kalabu (Marsupialia). Chromosoma 27:371–380. doi: 10.1007/BF00325676 CrossRefPubMedGoogle Scholar
  32. Heddle JA, Carrano AV (1977) The DNA content of micronuclei induced in mouse bone marrow by gamma irradation: evidence that micronuclei arise from acentric chromosomal fragments. Mutat Res 44:63–69. doi: 10.1016/0027-5107(77)90115-4 CrossRefPubMedGoogle Scholar
  33. Herrera J, López-León M, Cabrero J, Shaw M, Camacho JPM (1996) Evidence for B chromosome drive suppression in the grasshopper Eyprepocnemis plorans. Heredity 76:633–639. doi: 10.1038/hdy.1996.90 CrossRefGoogle Scholar
  34. Herrick G, Seger J (1999) Imprinting and paternal genome elimination in insects. Results Probl Cell Differ 25:41–71. doi: 10.1007/978-3-540-69111-2_3 CrossRefPubMedGoogle Scholar
  35. Imai HT (1974) B-chromosomes in the Myrmicine ant, Leptothorax spinosior. Chromosoma 45:431–444. doi: 10.1007/BF00283387 CrossRefPubMedGoogle Scholar
  36. Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Ann Rev Plant Biol 67:1–18. doi: 10.1146/annurev-arplant-043014-114714 CrossRefGoogle Scholar
  37. Jones RN (1995) B chromosomes in plants. Tansley Review No. 85. New Phytol 131:411–434. doi: 10.1111/j.1469-8137.1995.tb03079.x CrossRefGoogle Scholar
  38. Kayano H (1971) Accumulation of B chromosomes in the germ line of Locusta migratoria. Heredity 27:119–123. doi: 10.1038/hdy.1971.76 CrossRefGoogle Scholar
  39. Kloc M, Zagrodzinska B (2001) Chromatin elimination—an oddity or a common mechanism in differentiation and development? Differentiation 68:84–91. doi: 10.1046/j.1432-0436.2001.680202.x CrossRefPubMedGoogle Scholar
  40. Langdon T, Seago C, Jones RN, Ougham H, Thomas H, Forster JW, Jenkins G (2000) De novo evolution of satellite DNA on the rye B chromosome. Genetics 154:869–884PubMedPubMedCentralGoogle Scholar
  41. Longwell AC, Yerganian G (1965) Some observations on nuclear budding and nuclear extrusions in a Chinese hamster cell culture. J Natl Cancer I 34:53–69. doi: 10.1093/jnci/34.1.53 Google Scholar
  42. López-León M, Cabrero J, Camacho JPM, Cano M, Santos JL (1992) A widespread B chromosome polymorphism maintained without apparent drive. Evolution 46:529–539. doi: 10.2307/2409869 CrossRefPubMedGoogle Scholar
  43. Loray MA, Remis MI, Vilardi JC (1991) Parallel polymorphisms for supernumerary heterochromatin in Dichroplus elongatus (Orthoptera): effects on recombination and fertility. Genetica 84:155–163. doi: 10.1007/BF00127242 CrossRefGoogle Scholar
  44. Miao VP, Covert SF, VanEtten HD (1991) A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254:1773–1776. doi: 10.1126/science.1763326 CrossRefPubMedGoogle Scholar
  45. Milani D, Palacios-Gimenez OM, Cabral-de-Mello DC (2016) The U2 snDNA is a useful marker for B chromosome detection and frequency estimation in the grasshopper Abracris flavolineata. Cytogenet Genome Res (in press)Google Scholar
  46. Morais-Cecílio L, Delgado M, Jones RN, Viegas W (1996) Painting rye B chromosomes in wheat: interphase chromatin organization, nuclear disposition and association in plants with two, three or four Bs. Chromosom Res 4:195–200. doi: 10.1007/BF02254959 CrossRefGoogle Scholar
  47. Nur U (1963) A mitotically unstable supernumerary chromosome with an accumulation mechanism in a grasshopper. Chromosoma 14:407–422. doi: 10.1007/BF00326786 CrossRefPubMedGoogle Scholar
  48. Nur U (1969) Mitotic instability leading to an accumulation of B-chromosomes in grasshoppers. Chromosoma 27:1–19. doi: 10.1007/BF00326108 CrossRefPubMedGoogle Scholar
  49. Pardo MC, López-León MD, Cabrero J, Camacho JPM (1994) Transmission analysis of mitotically unstable B chromosomes in Locusta migratoria. Genome 37:1027–1034. doi: 10.1139/g94-146 CrossRefPubMedGoogle Scholar
  50. Pearse FK, Ehrlich PR (1979) B chromosome variation in Euphydryas colon (Lepidoptera, Nymphalidae). Chromosoma 73:263–274. doi: 10.1007/BF00288691 CrossRefGoogle Scholar
  51. Phillips DM (1970) Insect sperm: their structure and morphogenesis. J Cell Biol 44:243–277CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pigozzi MI, Solari AJ (2005) The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma 114:403–409. doi: 10.1007/s00412-005-0025-5 CrossRefPubMedGoogle Scholar
  53. Randolph LF (1941) Genetic characteristics of the B chromosomes in maize. Genetics 26:608–631PubMedPubMedCentralGoogle Scholar
  54. Ruiz-Ruano FJ, Cabrero J, López-León MD, Camacho JPM (2016) Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome. Chromosoma (in press) doi:  10.1007/s00412-016-0611-8
  55. Schoenmakers S, Wassenaar E, Laven JSE, Grootegoed JA, Baarends WM (2010) Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch. Chromosoma 119:311–324. doi: 10.1007/s00412-010-0258-9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schubert I, Oud JL (1997) There is an upper limit of chromosome size for normal development of an organism. Cell 88:515–520. doi: 10.1016/S0092-8674(00)81891-7 CrossRefPubMedGoogle Scholar
  57. Shimizu N, Itoh N, Utiyama H, Wahl GM (1998) Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 140:1307–1320. doi: 10.1083/jcb.140.6.1307 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Staiber W (1988) G-banding of germ line limited chromosomes in Acricotopus lucidus (Diptera, Chironomidae). Chromosoma 97:231–234. doi: 10.1007/BF00292966 CrossRefGoogle Scholar
  59. Suja JA, de la Vega CG, Rufas JS (1989) Mechanisms promoting the appearance of abnormal spermatids in B-carrier individuals of Eyprepocnemis plorans (Orthoptera). Genome 32:64–71. doi: 10.1139/g89-412 CrossRefGoogle Scholar
  60. Swim MM, Kaeding KE, Ferree PM (2012) Impact of a selfish B chromosome on chromatin dynamics and nuclear organization in Nasonia. J Cell Sci 125:5241–5249. doi: 10.1242/jcs.113423 CrossRefPubMedGoogle Scholar
  61. Szöllösi A (1975) Electron microscope study of spermiogenesis in Locusta migratoria (Insect Orthoptera). J Ultrasruct Res 50:322–346. doi: 10.1016/S0022-5320(75)80064-5 CrossRefGoogle Scholar
  62. Taverna SD, Coyne RS, Allis CD (2002) Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110:701–711. doi: 10.1016/S0092-8674(02)00941-8 CrossRefPubMedGoogle Scholar
  63. Teruel M, Cabrero J, Perfectti F, Alché JD, Camacho JPM (2009) Abnormal spermatid formation in the presence of the parasitic B24 chromosome in the grasshopper Eyprepocnemis plorans. Sex Dev 3:284–289. doi: 10.1159/000253307 CrossRefPubMedGoogle Scholar
  64. Turner JMA (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831. doi: 10.1242/dev.000018 CrossRefPubMedGoogle Scholar
  65. Utani K-i, Okamoto A, Shimizu N (2011) Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding. PLoS One 6(11):e27233. doi: 10.1371/journal.pone.0027233 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vaskova EA, Pavlova SV, Shevchenko AI, Zakian SM (2010) Meiotic inactivation of sex chromosomes in mammals. Russ J Genet 46:385–393. doi: 10.1134/s1022795410040010 CrossRefGoogle Scholar
  67. Viseras E, Camacho JPM (1985) The B-chromosome system of Omocestus bolivari: changes in B-behaviour in M4-polysomic B-males. Heredity 54:385–390. doi: 10.1038/hdy.1985.55 CrossRefGoogle Scholar
  68. Viseras E, Camacho J, Cano M, Santos J (1990) Relationship between mitotic instability and accumulation of B chromosomes in males and females of Locusta migratoria. Genome 33:23–29. doi: 10.1139/g90-005 CrossRefGoogle Scholar
  69. Wang J, Davis RE (2014) Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev 27:26–34. doi: 10.1016/j.gde.2014.03.012 CrossRefPubMedGoogle Scholar
  70. Williams E, Barclay PC (1972) Transmission of B-chromosomes in Dactylis. New Zeal J Bot 10:573–584. doi: 10.1080/0028825X.1972.10430247 CrossRefGoogle Scholar
  71. Zurita S, Cabrero J, López-León M, Camacho J (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274–277. doi: 10.2307/2410945 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Josefa Cabrero
    • 1
  • María Martín-Peciña
    • 1
  • Francisco J. Ruiz-Ruano
    • 1
  • Ricardo Gómez
    • 2
  • Juan Pedro M. Camacho
    • 1
    Email author
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Ciencia y Tecnología Agroforestal, E.T.S. de Ingenieros AgrónomosUniversidad de Castilla La ManchaAlbaceteSpain

Personalised recommendations