Chromosoma

, Volume 126, Issue 3, pp 365–373 | Cite as

The ISWI remodeler in plants: protein complexes, biochemical functions, and developmental roles

Mini-Review
  • 418 Downloads

Abstract

Imitation Switch (ISWI) is a member of the ATP-dependent chromatin remodeling factor family, whose members move or restructure nucleosomes using energy derived from ATP hydrolysis. ISWI proteins are conserved in eukaryotes and usually form complexes with DDT (DNA-binding homeobox and different transcription factors)-domain proteins. Here, we review recent research on ISWI in the model plant Arabidopsis thaliana (AtISWI). AtISWI forms complexes with AtDDT-domain proteins, many of which have domain structures that differ from those of DDT-domain proteins in yeast and animals. This might suggest that plant ISWI complexes have unique roles. In vivo studies have shown that AtISWI is involved in the formation of the evenly spaced pattern of nucleosome arrangement in gene bodies—this pattern is associated with high transcriptional levels of genes. In addition, AtISWI and the AtDDT-domain protein RINGLET (RLT) are involved in many developmental processes in A. thaliana, including meristem fate transition and organ formation. Studies on the functions of AtISWI may shed light on how chromatin remodeling functions in plants and also provide new information about the evolution of ISWI remodeling complexes in eukaryotes.

Keywords

Arabidopsis thaliana ISWI RLT ATP-dependent chromatin remodeling Plant epigenetics DDT domain 

Notes

Acknowledgements

The authors apologize for references not cited due to space limitations. This work was supported by grants from the National Natural Science Foundation of China (31630007/31422005/81471667), National Basic Research Program of China (973 Program, 2012CB910503), the Key Research Program of the Chinese Academy of Sciences (QYZDB-SSW-SMC010), and Youth Innovation Promotion Association CAS (2014241).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Glossary of domains and motifs in ISWI complexes

SWI2/SNF2-family ATPase

ATP hydrolysis to provide energy for changing contacts between histones and DNA (Bork and Koonin 1993; Clapier and Cairns 2009; Gorbalenya et al. 1988; Zhou et al. 2016)

HAND

DNA binding (Dang and Bartholomew 2007); dimerization (Racki and Narlikar 2008; Strohner et al. 2005)

SANT

DNA binding (Dang and Bartholomew 2007; Yamada et al. 2011); interaction with histone tail (Boyer et al. 2002; Boyer et al. 2004; Grune et al. 2003)

SLIDE

Interaction with DDT-domain proteins (Aravind and Iyer 2012; Dong et al. 2013); interaction with Ioc3 (Yamada et al. 2011); DNA binding (Dang and Bartholomew 2007; Grune et al. 2003; Yamada et al. 2011)

PHD

Interaction with methylated histones (Wysocka et al. 2006)

Bromo

Interaction with acetylated histones (Dhalluin et al. 1999)

WAC

DNA binding (Fyodorov and Kadonaga 2002)

DDT + WHIM

Interaction with SLIDE domain (Aravind and Iyer 2012; Doerks et al. 2001; Dong et al. 2013)

HD

Putative binding activity with DNA cis elements (Mukherjee et al. 2009)

Peptidase M50

Involved in proteolytic cleavage of PTM in response to retrograde signals (Sun et al. 2011)

HARE-HTH

Unknown, possibly involved in chromatin regulation (Aravind and Iyer 2012)

D-TOX A, B, ZF, G, H

Unknown (Dong et al. 2013; Mukherjee et al. 2009)

References

  1. Aalfs JD, Narlikar GJ, Kingston RE (2001) Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. The Journal of biological chemistry 276:34270–34278. doi: 10.1074/jbc.M104163200 CrossRefPubMedGoogle Scholar
  2. Aravind L, Iyer LM (2012) The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 11:119–131. doi: 10.4161/cc.11.1.18475 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc'h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644. doi: 10.1111/j.1365-313X.2008.03715.x CrossRefPubMedGoogle Scholar
  4. Badenhorst P, Voas M, Rebay I, Wu C (2002) Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 16:3186–3198. doi: 10.1101/gad.1032202 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bartholomew B (2014) ISWI chromatin remodeling: one primary actor or a coordinated effort? Current opinion in structural biology 24:150–155. doi: 10.1016/j.sbi.2014.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bork P, Koonin EV (1993) An expanding family of helicases within the ‘DEAD/H’ superfamily. Nucleic acids research 21:751–752CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bowman JL, Smyth DR, Meyerowitz EM (2012) The ABC model of flower development: then and now. Development 139:4095–4098. doi: 10.1242/dev.083972 CrossRefPubMedGoogle Scholar
  8. Boyer LA, Langer MR, Crowley KA, Tan S, Denu JM, Peterson CL (2002) Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol Cell 10:935–942CrossRefPubMedGoogle Scholar
  9. Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5:158–163. doi: 10.1038/nrm1314 CrossRefPubMedGoogle Scholar
  10. Che P, Lall S, Howell SH (2007) Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–1194. doi: 10.1007/s00425-007-0565-4 CrossRefPubMedGoogle Scholar
  11. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223 CrossRefPubMedGoogle Scholar
  12. Corona DF, Langst G, Clapier CR, Bonte EJ, Ferrari S, Tamkun JW, Becker PB (1999) ISWI is an ATP-dependent nucleosome remodeling factor. Mol Cell 3:239–245CrossRefPubMedGoogle Scholar
  13. Dang W, Bartholomew B (2007) Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Molecular and cellular biology 27:8306–8317. doi: 10.1128/MCB.01351-07 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496. doi: 10.1038/20974 CrossRefPubMedGoogle Scholar
  15. Doerks T, Copley R, Bork P (2001) DDT—a novel domain in different transcription and chromosome remodeling factors. Trends Biochem Sci 26:145–146CrossRefPubMedGoogle Scholar
  16. Dong J, Gao Z, Liu S, Li G, Yang Z, Huang H, Xu L (2013) SLIDE, the protein interacting domain of imitation switch remodelers, binds DDT-domain proteins of different subfamilies in chromatin remodeling complexes. J Integr Plant Biol 55:928–937. doi: 10.1111/jipb.12069 PubMedGoogle Scholar
  17. Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606. doi: 10.1016/j.tplants.2011.08.004 CrossRefPubMedGoogle Scholar
  18. Eberharter A, Ferrari S, Langst G, Straub T, Imhof A, Varga-Weisz P, Wilm M, Becker PB (2001) Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. The EMBO journal 20:3781–3788. doi: 10.1093/emboj/20.14.3781 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180. doi: 10.1038/cr.2012.63 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Feng P, Guo H, Chi W, Chai X, Sun X, Xu X, Ma J, Rochaix JD, Leister D, Wang H, Lu C, Zhang L (2016) Chloroplast retrograde signal regulates flowering. Proc Natl Acad Sci U S A 113:10708–10713. doi: 10.1073/pnas.1521599113 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170–183. doi: 10.1101/gad.1139604 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fyodorov DV, Kadonaga JT (2002) Binding of Acf1 to DNA involves a WAC motif and is important for ACF-mediated chromatin assembly. Molecular and cellular biology 22:6344–6353CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gelbart ME, Rechsteiner T, Richmond TJ, Tsukiyama T (2001) Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol Cell Biol 21:2098–2106. doi: 10.1128/MCB.21.6.2098-2106.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, Smolle M, Workman JL, Barton GJ, Owen-Hughes T (2011) A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333:1758–1760. doi: 10.1126/science.1206097 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1988) A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS letters 235:16–24CrossRefPubMedGoogle Scholar
  26. Grune T, Brzeski J, Eberharter A, Clapier CR, Corona DF, Becker PB, Muller CW (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12:449–460CrossRefPubMedGoogle Scholar
  27. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517PubMedGoogle Scholar
  28. Han SK, Wu MF, Cui S, Wagner D (2015) Roles and activities of chromatin remodeling ATPases in plants. Plant J 83:62–77. doi: 10.1111/tpj.12877 CrossRefPubMedGoogle Scholar
  29. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420. doi: 10.1038/cr.2011.32 CrossRefPubMedPubMedCentralGoogle Scholar
  30. He C, Chen X, Huang H, Xu L (2012) Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet 8:e1002911CrossRefPubMedPubMedCentralGoogle Scholar
  31. He C, Huang H, Xu L (2013) Mechanisms guiding polycomb activities during gene silencing in Arabidopsis thaliana. Front Plant Sci 4:454. doi: 10.3389/fpls.2013.00454 PubMedPubMedCentralGoogle Scholar
  32. Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555–2565CrossRefPubMedGoogle Scholar
  33. Huanca-Mamani W, Garcia-Aguilar M, Leon-Martinez G, Grossniklaus U, Vielle-Calzada JP (2005) CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 102:17231–17236. doi: 10.1073/pnas.0508186102 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451. doi: 10.1242/dev.134668 CrossRefPubMedGoogle Scholar
  35. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell. doi: 10.1105/tpc.113.116053 PubMedPubMedCentralGoogle Scholar
  36. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155CrossRefPubMedGoogle Scholar
  37. Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, Kadonaga JT (1999) ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13:1529–1539CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jiang D, Wang Y, He Y (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components. PLoS ONE 3:e3404. doi: 10.1371/journal.pone.0003404 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965CrossRefPubMedGoogle Scholar
  40. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272CrossRefPubMedGoogle Scholar
  41. Kim YO, Kang H (2006) The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant & cell physiology 47:793–798. doi: 10.1093/pcp/pcj047 CrossRefGoogle Scholar
  42. Knizewski L, Ginalski K, Jerzmanowski A (2008) Snf2 proteins in plants: gene silencing and beyond. Trends Plant Sci 13:557–565. doi: 10.1016/j.tplants.2008.08.004 CrossRefPubMedGoogle Scholar
  43. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962CrossRefPubMedGoogle Scholar
  44. Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. The EMBO journal 22:4804–4814. doi: 10.1093/emboj/cdg444 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871CrossRefPubMedGoogle Scholar
  46. Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K (2003) Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 44:555–564CrossRefPubMedGoogle Scholar
  47. Langst G, Becker PB (2001) Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J Cell Sci 114:2561–2568PubMedGoogle Scholar
  48. Langst G, Bonte EJ, Corona DF, Becker PB (1999) Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97:843–852CrossRefPubMedGoogle Scholar
  49. Li F, Wu X, Tsang E, Cutler AJ (2005) Transcriptional profiling of imbibed Brassica napus seed. Genomics 86:718–730. doi: 10.1016/j.ygeno.2005.07.006 CrossRefPubMedGoogle Scholar
  50. Li G, Liu S, Wang J, He J, Huang H, Zhang Y, Xu L (2014) ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J 78:706–714. doi: 10.1111/tpj.12499 CrossRefPubMedGoogle Scholar
  51. Li G, Zhang J, Li J, Yang Z, Huang H, Xu L (2012) ISWI chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis. Plant J 72:261–270CrossRefPubMedGoogle Scholar
  52. Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L (2014) WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26:1081–1093. doi: 10.1105/tpc.114.122887 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719. doi: 10.1038/ng.854 CrossRefPubMedGoogle Scholar
  54. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. doi: 10.1038/38444 CrossRefPubMedGoogle Scholar
  55. Lup SD, Tian X, Xu J, Perez-Perez JM (2016) Wound signaling of regenerative cell reprogramming. Plant science: an international journal of experimental plant biology 250:178–187. doi: 10.1016/j.plantsci.2016.06.012 CrossRefGoogle Scholar
  56. Ma L, Gao Y, Qu L, Chen Z, Li J, Zhao H, Deng XW (2002) Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14:2383–2398CrossRefPubMedPubMedCentralGoogle Scholar
  57. Meins F Jr (1989) Habituation: heritable variation in the requirement of cultured plant cells for hormones. Annual review of genetics 23:395–408. doi: 10.1146/annurev.ge.23.120189.002143 CrossRefPubMedGoogle Scholar
  58. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492. doi: 10.1038/ng.253 CrossRefPubMedGoogle Scholar
  59. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794. doi: 10.1093/molbev/msp201 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Narlikar GJ (2010) A proposal for kinetic proof reading by ISWI family chromatin remodeling motors. Curr Opin Chem Biol 14:660–665. doi: 10.1016/j.cbpa.2010.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci U S A 96:13839–13844CrossRefPubMedPubMedCentralGoogle Scholar
  63. Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pischke MS, Huttlin EL, Hegeman AD, Sussman MR (2006) A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol 140:1255–1278. doi: 10.1104/pp.105.076059 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pulianmackal AJ, Kareem AV, Durgaprasad K, Trivedi ZB, Prasad K (2014) Competence and regulatory interactions during regeneration in plants. Frontiers in plant science 5:142. doi: 10.3389/fpls.2014.00142 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Racki LR, Narlikar GJ (2008) ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. Current opinion in genetics & development 18:137–144. doi: 10.1016/j.gde.2008.01.007 CrossRefGoogle Scholar
  67. Ramirez-Parra E, Frundt C, Gutierrez C (2003) A genome-wide identification of E2F-regulated genes in Arabidopsis. Plant J 33:801–811CrossRefPubMedGoogle Scholar
  68. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. doi: 10.1104/pp.103.033431 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sala A, Toto M, Pinello L, Gabriele A, Di Benedetto V, Ingrassia AM, Lo Bosco G, Di Gesu V, Giancarlo R, Corona DF (2011) Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J 30:1766–1777. doi: 10.1038/emboj.2011.98 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616CrossRefPubMedGoogle Scholar
  71. Schatlowski N, Creasey K, Goodrich J, Schubert D (2008) Keeping plants in shape: polycomb-group genes and histone methylation. Semin Cell Dev Biol 19:547–553. doi: 10.1016/j.semcdb.2008.07.019 CrossRefPubMedGoogle Scholar
  72. Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458CrossRefPubMedPubMedCentralGoogle Scholar
  73. Smaczniak C, Immink RG, Muino JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109:1560–1565. doi: 10.1073/pnas.1112871109 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stockdale C, Flaus A, Ferreira H, Owen-Hughes T (2006) Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. The Journal of biological chemistry 281:16279–16288. doi: 10.1074/jbc.M600682200 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Strohner R, Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstatter J, Rippe K, Langst G (2005) A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nature structural & molecular biology 12:683–690. doi: 10.1038/nsmb966 CrossRefGoogle Scholar
  76. Su YH, Zhang XS (2014) The hormonal control of regeneration in plants. Curr Top Dev Biol 108:35–69. doi: 10.1016/B978-0-12-391498-9.00010-3 CrossRefPubMedGoogle Scholar
  77. Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21:212–218. doi: 10.1016/j.tcb.2010.12.004 CrossRefPubMedGoogle Scholar
  78. Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471. doi: 10.1016/j.devcel.2010.02.004 CrossRefPubMedGoogle Scholar
  79. Sugiyama M, Nikawa J (2001) The Saccharomyces cerevisiae Isw2p-Itc1p complex represses INO1 expression and maintains cell morphology. J Bacteriol 183:4985–4993CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L (2011) A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nature communications 2:477. doi: 10.1038/ncomms1486 CrossRefPubMedGoogle Scholar
  81. Sundaram S, Kertbundit S, Shakirov EV, Iyer LM, Juricek M, Hall TC (2013) Gene networks and chromatin and transcriptional regulation of the phaseolin promoter in Arabidopsis. Plant Cell 25:2601–2617. doi: 10.1105/tpc.113.112714 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Toto M, D'Angelo G, Corona DF (2014) Regulation of ISWI chromatin remodelling activity. Chromosoma 123:91–102. doi: 10.1007/s00412-013-0447-4 CrossRefPubMedGoogle Scholar
  83. Tsukiyama T, Daniel C, Tamkun J, Wu C (1995) ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026CrossRefPubMedGoogle Scholar
  84. Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020CrossRefPubMedGoogle Scholar
  85. Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GT, Gruissem W, Van de Peer Y, Inze D, De Veylder L (2005) Genome-wide identification of potential plant E2F target genes. Plant Physiol 139:316–328. doi: 10.1104/pp.105.066290 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602. doi: 10.1038/41587 CrossRefPubMedGoogle Scholar
  87. Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9:1263–1277CrossRefPubMedGoogle Scholar
  88. Witkowski L, Foulkes WD (2015) In brief: picturing the complex world of chromatin remodelling families. The Journal of pathology 237:403–406. doi: 10.1002/path.4585 CrossRefPubMedGoogle Scholar
  89. Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annual review of biochemistry 67:545–579. doi: 10.1146/annurev.biochem.67.1.545 CrossRefPubMedGoogle Scholar
  90. Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90. doi: 10.1038/nature04815 PubMedGoogle Scholar
  91. Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C (2001) Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 8:531–543CrossRefPubMedGoogle Scholar
  92. Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33. doi: 10.1016/B978-0-12-391498-9.00009-7 CrossRefPubMedGoogle Scholar
  93. Yadon AN, Tsukiyama T (2011) SnapShot: chromatin remodeling: ISWI. Cell 144:453-453.e1. doi: 10.1016/j.cell.2011.01.019
  94. Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, Sargent DF, Richmond TJ (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448–453. doi: 10.1038/nature09947 CrossRefPubMedGoogle Scholar
  95. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129. doi: 10.1371/journal.pbio.0050129 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Zhou CY, Johnson SL, Gamarra NI, Narlikar GJ (2016) Mechanisms of ATP-dependent chromatin remodeling motors. Annual review of biophysics 45:153–181. doi: 10.1146/annurev-biophys-051013-022819 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
  2. 2.College of Life and Environment SciencesShanghai Normal UniversityShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Stanford Cardiovascular InstituteStanford University School of MedicineStanfordUSA
  5. 5.Department of Instrumentation Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations