, Volume 126, Issue 4, pp 465–471 | Cite as

A replication-time-controlling sequence element in Schizosaccharomyces pombe

Original Article


Eukaryotic replication origins are highly variable in their activity and replication timing. The nature and role of cis-acting regulatory sequences that control chromosomal replication timing is not well defined. In the fission yeast, Schizosaccharomyces pombe, a 200-bp late-replication-enforcing element (LRE), has been shown to enforce late replication of ARS elements in plasmids. Here, we show that a short (133-bp) fragment of the LRE (shLRE) is required for causing late replication of adjoining origins in its native as well as in an ectopic early-replicating chromosomal location. Active from both sides of an early-replicating origin, the shLRE is a bona fide cis-acting regulatory element that imposes late replication timing in the chromosome.


ARS elements Replication origins Replication timing 2D gel analysis Fission yeast 

Supplementary material

412_2016_606_MOESM1_ESM.docx (14 kb)
Supplemental Table 1(DOCX 14 kb)
412_2016_606_Fig5_ESM.gif (2.8 mb)
Supplemental Fig. 1

Diagram showing the strategy for confirmation of the new S. pombe strains by PCR. [Cont. = Chromosomal context; LF1 = Left flanking 1; Ura4 = Selectable marker; LF2 = Left flanking 2; ARS = ars2004/ars727; RF1 = Right flanking 1]. Amplification by the two pairs of primers, (i) context F-ura4R and (ii) ura4F-ARSF/R, confirms the new strains. (GIF 2881 kb)

412_2016_606_MOESM2_ESM.tif (2.8 mb)
High Resolution Image (TIFF 2881 kb)
412_2016_606_Fig6_ESM.gif (18.6 mb)
Supplemental Fig. 2

FACS profiles of different cell types at different sampling time points. (GIF 19079 kb)

412_2016_606_MOESM3_ESM.tif (18.6 mb)
High Resolution Image (TIFF 19079 kb)


  1. Brewer BJ, Fangman WL (1987) The localization of replication origin on ARS plasmids in Saccharomyces cerevisiae. Cell 51:463–471CrossRefPubMedGoogle Scholar
  2. Cotobal C, Segurado M, Antequera F (2010) Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe. EMBO J 29:934–942CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4:983–993CrossRefPubMedGoogle Scholar
  4. Dubey DD, Srivastava VK, Pratihar AS, Yadava MP (2010) High density of weak replication origins in a 75-kb region of chromosome 2 of fission yeast. Genes Cells 15:1–12CrossRefPubMedGoogle Scholar
  5. Ferguson BM, Fangman WL (1992) A position effect on the time of replication origin activation in yeast. Cell 68:333–339CrossRefPubMedGoogle Scholar
  6. Friedman KL, Diller JD, Ferguson BF, Nyland SVM, Brewer BJ, Fangman WL (1996) Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev 10:1595–1607CrossRefPubMedGoogle Scholar
  7. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H (2012) Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26:137–150CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hayashi MT, Katou Y, Itoh T, Tazumi M, Yamada Y, Takahashi TS, Nakagawa T, Shirahige K, Masukata H (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 26:1327–1339CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H (2009) The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 11:357–362CrossRefPubMedGoogle Scholar
  10. Hiratani I, Gilbert DM (2009) Replication timing as an epigenetic mark. Epigenetics 4(2):93–97CrossRefPubMedPubMedCentralGoogle Scholar
  11. Huberman JA, Spotila LD, Nawotka KA, El-Assouli SM, Davis LR (1987) The in vivo replication origin of the yeast 2 microns plasmid. Cell 51(3):473–481CrossRefPubMedGoogle Scholar
  12. Kanoh Y, Matsumoto S, Fukatsu R, Kakusho N, Kono N, Renard-Guillet C, Masuda K, Iida K, Nagasawa K, Shirahige K, Masai H (2015) Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat Struct Mol Biol 22(11):889–897PubMedGoogle Scholar
  13. Kim SM, Huberman JA (2001) Regulation of replication timing in fission yeast. EMBO J 20:6115–6126CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim SM, Zhang DY, Huberman JA (2001) Multiple redundant sequence elements within the fission yeast ura4 replication origin enhancer. BMC Mol Biol 2:e1CrossRefGoogle Scholar
  15. Kim SM, Dubey DD, Huberman JA (2003) Early-replicating heterochromatin. Genes Dev 17:330–335CrossRefPubMedPubMedCentralGoogle Scholar
  16. Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, Tavare S, Aparicio OM (2012) Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148:99–111CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lõoke M, Kristjuhan K, Värv S, Kristjuhan A (2013) Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast. EMBO Rep 14:191–198CrossRefPubMedGoogle Scholar
  18. MacAlpine DM, Rodriguez HK, Bell SP (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18:3094–3105CrossRefPubMedPubMedCentralGoogle Scholar
  19. Okuno Y, Satos H, Sekiguchi M, Masukata H (1999) Clustered adenine/thymine stretches are essential for function of a fission yeast replication origin. Mol Cell Biol 19:6699–6709CrossRefPubMedPubMedCentralGoogle Scholar
  20. Pratihar AS, Tripathi VP, Yadav MP, Dubey DD (2015) Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe. J Biosci 40(5):845–853CrossRefPubMedGoogle Scholar
  21. Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211CrossRefPubMedGoogle Scholar
  22. Tazumi A, Fukuura M, Nakato R, Kishimoto A, Takenaka T, Ogawa S, Song JH, Takahashi TS, Nakagawa T, Shirahige K, et al. (2012) Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev 26:2050–2062CrossRefPubMedPubMedCentralGoogle Scholar
  23. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10:1223–1233CrossRefPubMedGoogle Scholar
  24. Yamazaki S, Hayano M, Masai H (2013) Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 29(8):449–460CrossRefPubMedGoogle Scholar
  25. Yompakdee C, Huberman JA (2004) Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J Biol Chem 279:42337–42344CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of BiotechnologyVeer Bahadur Singh Purvanchal UniversityJaunpurIndia

Personalised recommendations