Advertisement

Chromosoma

, Volume 126, Issue 3, pp 389–397 | Cite as

Chromosome identification for the carnivorous plant Genlisea margaretae

  • Trung D. Tran
  • Hana Šimková
  • Renate Schmidt
  • Jaroslav Doležel
  • Ingo Schubert
  • Jörg Fuchs
Original Article

Abstract

Genlisea margaretae, subgenus Genlisea, section Recurvatae (184 Mbp/1C), belongs to a plant genus with a 25-fold genome size difference and an extreme genome plasticity. Its 19 chromosome pairs could be distinguished individually by an approach combining optimized probe pooling and consecutive rounds of multicolor fluorescence in situ hybridization (mcFISH) with bacterial artificial chromosomes (BACs) selected for repeat-free inserts. Fifty-one BACs were assigned to 18 chromosome pairs. They provide a tool for future assignment of genomic sequence contigs to distinct chromosomes as well as for identification of homeologous chromosome regions in other species of the carnivorous Lentibulariaceae family, and potentially of chromosome rearrangements, in cases where more than one BAC per chromosome pair was identified.

Keywords

Genlisea Multicolor fluorescence in situ hybridization (mcFISH) Reprobing BACs Karyotyping 

Notes

Acknowledgments

We thank Ines Walde and Kristin Langanke for technical assistance; Tomáš Beseda, Jan Vrána, and Jana Dostálová for assistance with flow sorting and BAC library construction; and Giang T.H. Vu and Hieu X. Cao for helpful discussions. This work was supported by a grant of the Deutsche Forschungsgemeinschaft to IS and JF (SCHU 951/16-1), by the European Social Fund (CZ.1.07/2.3.00/20.0189) to IS, by the Ministry of Education, Youth and Sports of the Czech Republic (grant LO1204 from the National Program of Sustainability I) to HŠ and JD, and by a PhD scholarship of the Vietnam Ministry of Education and Training to TDT.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

412_2016_599_MOESM1_ESM.docx (17 kb)
Supplemental Table 1 (DOCX 16 kb)
412_2016_599_Fig6_ESM.jpg (534 kb)
Supplemental Fig. 1

Phylogenetic relationship of Genlisea species which belong to the subgenus Tayloria (in blue) or the three sections Africanae (in green), Recurvatae (in red), and Genlisea (in violet) of the subgenus Genlisea. Subject of this study, G. margaretae, is labeled in red. The tree was modified based on Vu et al. (2015). (JPG 534 kb)

412_2016_599_MOESM2_ESM.tif (2.4 mb)
High Resolution (TIF 2466 kb)
412_2016_599_Fig7_ESM.jpg (601 kb)
Supplemental Fig. 2

The first series of successive mcFISH assigning BACs of pools PP_01 to PP_04 on nine chromosome pairs of G. margaretae. (A) BAC pools PP_01, PP_02 and PP_04 subsequently hybridized to the same metaphase plate. Note that FISH signals of BAC clone B03 of pool PP_02 are missing in this cell but identifiable in another cell (e.g., in panel C). Due to the degradation of cytological preparations after probe stripping, the chromosomal localization of pool PP_03 in comparison with pool PP_01 (B) or with pools PP_02 and PP_04 (C) was investigated in different metaphases. (D) Nine chromosome pairs of G. margaretae are hallmarked by either four BACs that identify a single chromosome each or by five groups of BACs each of which located on a different chromosome (connected by blue lines) when the results of sequential mcFISH from three metaphase cells are combined, as indicated in the right panel of A–C. Underlined BACs were used to prepare chromosome pools CP_01 and CP_02 for the second successive mcFISH experiment. Bars represent 5 μm. (JPG 600 kb)

412_2016_599_Fig8_ESM.jpg (518 kb)
Supplemental Fig. 2

The first series of successive mcFISH assigning BACs of pools PP_01 to PP_04 on nine chromosome pairs of G. margaretae. (A) BAC pools PP_01, PP_02 and PP_04 subsequently hybridized to the same metaphase plate. Note that FISH signals of BAC clone B03 of pool PP_02 are missing in this cell but identifiable in another cell (e.g., in panel C). Due to the degradation of cytological preparations after probe stripping, the chromosomal localization of pool PP_03 in comparison with pool PP_01 (B) or with pools PP_02 and PP_04 (C) was investigated in different metaphases. (D) Nine chromosome pairs of G. margaretae are hallmarked by either four BACs that identify a single chromosome each or by five groups of BACs each of which located on a different chromosome (connected by blue lines) when the results of sequential mcFISH from three metaphase cells are combined, as indicated in the right panel of A–C. Underlined BACs were used to prepare chromosome pools CP_01 and CP_02 for the second successive mcFISH experiment. Bars represent 5 μm. (JPG 600 kb)

412_2016_599_MOESM3_ESM.tif (3.6 mb)
High Resolution (TIF 3725 kb)
412_2016_599_MOESM4_ESM.tif (3.2 mb)
High Resolution (TIF 3242 kb)
412_2016_599_Fig9_ESM.jpg (481 kb)
Supplemental Fig. 3

The second successive mcFISH experiment assigning repeat-free BACs of pools PP_05 to PP_08 and CP_01 and CP_02 on 15 chromosome pairs of G. margaretae. BAC B10 of pool PP_06 yielded no signal and thus was excluded. The co-localizations of BACs after six hybridizations are indicated by the blue lines connecting corresponding probes. Bar represents 5 μm. (JPG 480 kb)

412_2016_599_MOESM5_ESM.tif (2.9 mb)
High Resolution (TIF 2920 kb)

References

  1. Akhunov ED, Akhunova AR, Dvorak J (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor Appl Genet 111:1617–1622. doi: 10.1007/s00122-005-0093-1 CrossRefPubMedGoogle Scholar
  2. Ali HB, Lysak MA, Schubert I (2005) Chromosomal localization of rDNA in the Brassicaceae. Genome 48:341–346. doi: 10.1139/g04-116 CrossRefPubMedGoogle Scholar
  3. Barthlott W, Porembski S, Fischer E, Gemmel B (1998) First protozoa-trapping plant found. Nature 392:447–447. doi: 10.1038/33037 CrossRefGoogle Scholar
  4. Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann Bot 91:547–557CrossRefPubMedPubMedCentralGoogle Scholar
  5. Betekhtin A, Jenkins G, Hasterok R (2014) Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. Plos One 9 doi: 10.1371/journal.pone.0115108
  6. Cao HX, Schmutzer T, Scholz U, Pecinka A, Schubert I, Vu GT (2015) Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Front Microbiol 6:526. doi: 10.3389/fmicb.2015.00526 PubMedPubMedCentralGoogle Scholar
  7. Cao HX, Vu GT, Wang W, Appenroth KJ, Messing J, Schubert I (2016) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209:354–363. doi: 10.1111/nph.13592 CrossRefPubMedGoogle Scholar
  8. Fischer E, Porembski S, Barthlott W (2000) Revision of the genus Genlisea (Lentibulariaceae) in Africa and Madagascar with notes on ecology and phytogeography. Nord J Bot 20:291–318. doi: 10.1111/j.1756-1051.2000.tb00746.x CrossRefGoogle Scholar
  9. Fleischmann A, Schaeferhoff B, Heubl G, Rivadavia F, Barthlott W, Mueller K (2010) Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae). Mol Phylogen Evol:768-783.Google Scholar
  10. Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, Greilhuber J, Müller KF, Heubl G (2014) Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot 114:1651–1663. doi: 10.1093/aob/mcu189 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual (Fourth edition) vol 1. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  12. Greilhuber J, Borsch T, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosome of bacterial size. Plant Biol 8:770–777CrossRefPubMedGoogle Scholar
  13. Hasterok R, Marasek A, Donnison IS, Armstead I, Thomas A, King IP, Wolny E, Idziak D, Draper J, Jenkins G (2006a) Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173:349–362. doi: 10.1534/genetics.105.049726 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J (2006b) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216. doi: 10.1093/Aob/Mcj031 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Janda J, Šafář J, Kubaláková M, Bartoš J, Kovářová P, Suchánková P, Pateyron S, Číhalíková J, Sourdille P, Šimková H, Faivre-Rampant P, Hřibová E, Bernard M, Lukaszewski A, Doležel J, Chalhoub B (2006) Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986. doi: 10.1111/j.1365-313X.2006.02840.x CrossRefPubMedGoogle Scholar
  16. Jobson RW, Albert VA (2002) Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics 18:127–136. doi: 10.1111/j.1096-0031.2002.tb00145.x Google Scholar
  17. Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosom Res 11:195–204. doi: 10.1023/A:1022879608152 CrossRefGoogle Scholar
  18. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006a) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229. doi: 10.1073/pnas.0510791103 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lysak MA, Fransz P, Schubert I (2006b) Cytogenetic analyses of Arabidopsis. Methods Mol Biol 323:173–186. doi: 10.1385/1-59745-003-0:173 PubMedGoogle Scholar
  20. Lysak MA, Mandakova T, Schranz ME (2016) Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr Opin Plant Biol 30:108-115. doi: 10.1016/j.pbi.2016.02.001Google Scholar
  21. Mandakova T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570. doi: 10.1105/tpc.108.062166 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mandakova T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290. doi: 10.1105/tpc.110.074526 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mueller K, Borsch T, Legendre L, Porembski S, Theisen I, Barthlott W (2003) Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biol 6:477–490CrossRefGoogle Scholar
  24. O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243. doi: 10.1046/j.1365-313x.2000.00781.x CrossRefPubMedGoogle Scholar
  25. Shibata F, Sahara K, Naito Y, Yasukochi Y (2009) Reprobing multicolor FISH preparations in lepidopteran chromosome. Zool Sci 26:187–190. doi: 10.2108/zsj.26.187 CrossRefPubMedGoogle Scholar
  26. Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J (2003) Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol Plant 46:369–373. doi: 10.1023/A:1024322001786 CrossRefGoogle Scholar
  27. Tran TD, Cao HX, Jovtchev G, Neumann P, Novák P, Fojtová M, Vu GT, Macas J, Fajkus J, Schubert I, Fuchs J (2015a) Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J 84:1087–1099. doi: 10.1111/tpj.13058 CrossRefPubMedGoogle Scholar
  28. Tran TD, Cao HX, Jovtchev G, Novák P, Vu GT, Macas J, Schubert I, Fuchs J (2015b) Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Front Plant Sci 6:613. doi: 10.3389/fpls.2015.00613 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Vu GTH, Schmutzer T, Bull F, Cao HX, Fuchs J, Tran TD, Jovtchev G, Pistrick K, Stein N, Pecinka A, Neumann P, Novak P, Macas J, Dear PH, Blattner FR, Scholz U, Schubert I (2015) Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8:3. doi: 10.3835/plantgenome2015.04.0021 CrossRefGoogle Scholar
  30. Wang K, Guan B, Guo W, Zhou B, Hu Y, Zhu Y, Zhang T (2008) Completely distinguishing individual A-genome chromosomes and their karyotyping analysis by multiple bacterial artificial chromosome—fluorescence in situ hybridization. Genetics 178:1117–1122. doi: 10.1534/genetics.107.083576 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Xiong Z, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49. doi: 10.1534/genetics.110.122473 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yang L, Koo DH, Li D, Zhang T, Jiang J, Luan F, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen J, Weng Y (2014) Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77:16–30. doi: 10.1111/tpj.12355
  33. Zhang H-B, Scheuring CF, Zhang M, Zhang Y, Wu C-C, Dong JJ, Li Y (2012) Construction of BIBAC and BAC libraries from a variety of organisms for advanced genomics research. Nat Protoc 7:479–499CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Trung D. Tran
    • 1
    • 2
  • Hana Šimková
    • 3
  • Renate Schmidt
    • 1
  • Jaroslav Doležel
    • 3
  • Ingo Schubert
    • 1
    • 4
  • Jörg Fuchs
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Stadt SeelandGermany
  2. 2.Plant Resource CenterVietnam Academy of Agricultural ScienceHanoiVietnam
  3. 3.Centre of the Region Hana for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
  4. 4.Central European Institute of Technology and Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations