, Volume 125, Issue 2, pp 277–286 | Cite as

Back to the roots: segregation of univalent sex chromosomes in meiosis

  • Gunar Fabig
  • Thomas Müller-Reichert
  • Leocadia V. Paliulis


In males of many taxa, univalent sex chromosomes normally segregate during the first meiotic division, and analysis of sex chromosome segregation was foundational for the chromosome theory of inheritance. Correct segregation of single or multiple univalent sex chromosomes occurs in a cellular environment where every other chromosome is a bivalent that is being partitioned into homologous chromosomes at anaphase I. The mechanics of univalent chromosome segregation vary among animal taxa. In some, univalents establish syntelic attachment of sister kinetochores to the spindle. In others, amphitelic attachment is established. Here, we review how this problem of segregation of unpaired chromosomes is solved in different animal systems. In addition, we give a short outlook of how mechanistic insights into this process could be gained by explicitly studying model organisms, such as Caenorhabditis elegans.


Male meiosis Univalent chromosomes Sex chromosomes Nematodes C. elegans Chromosome segregation 



The authors thank Drs. Mary Howe and Andre Pires da Silva for critically reading the manuscript, as well as Dr. Kai Johnsson (EPFL, Switzerland) for sharing unpublished reagents. C. remanei, C. brenneri, and Pristionchus pacificus were obtained from the Caenorhabditis Genetics Center (CGC), which is funded by an NIH Research Infrastructure Program (P40 OD010440). The authors would also like to thank Franziska Friedrich (MPI-CBG, Dresden, Germany) for help in scientific drawing. Research on meiosis in the Müller-Reichert lab is funded by the Deutsche Forschungsgemeinschaft (DFG SPP1384 “Mechansims of Genome Haploidization,” grant MU1423/3-1 and 3-2 to TMR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode Caenorhabditis elegans. Chromosome Res 1:15–26CrossRefPubMedGoogle Scholar
  2. Ault JG (1984) Unipolar orientation stability of the sex univalent in the grasshopper (Melanoplus sanguinipes). Chromosoma 89:201–205CrossRefGoogle Scholar
  3. Ault JG (1986) Stable versus unstable orientations of sex chromosomes in two grasshopper species. Chromosoma 93:298–304CrossRefPubMedGoogle Scholar
  4. Bean CJ, Schaner CE, Kelly WG (2004) Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat Genet 36:100–105CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benavente R, Wettstein R (1977) An ultrastructural cytogenetic study on the evolution of sex chromosomes during the spermatogenesis of Lycosa malitosa (Arachnida). Chromosoma 64:255–277CrossRefGoogle Scholar
  6. Boring AM (1909) A small chromosome in Ascaris megalocephala. Arch f Zellf 4:120–131Google Scholar
  7. Boveri T (1899) Die Entwicklung von Ascaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse. In: Festschrift zum siebzigsten Geburtstag von Carl v. Kupffer, Jena., pp 383–429Google Scholar
  8. Boveri T (1909) Über Geschlechtschromosomen bei Nematoden. Arch f Zellf 4:132–141Google Scholar
  9. Brady M, Paliulis LV (2015) Chromosome interaction over a distance in meiosis. R Soc open sci 2:150029CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cattanach BM (1962) X0 mice. Genet Res 3:487–490CrossRefGoogle Scholar
  11. Church K (1979a) The grasshopper X chromosome. I. States of condensation and the nuclear envelope at G1, S and G2 of premeiotic interphase and at early meiotic prophase. Chromosoma 71:347–358CrossRefPubMedGoogle Scholar
  12. Church K (1979b) The grasshopper X chromosome. II. Negative heteropycnosis, transcription activities and compartmentation during spermatogonial stages. Chromosoma 71:359–370CrossRefPubMedGoogle Scholar
  13. Chaudhuri J, Kache V, Pires da Silva A (2011) Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Current Biol 21:1548–1551CrossRefGoogle Scholar
  14. Cochran JC, Sindelar CV, Mulko NK, Collins KA, Kong SE, Hawley RS, Kull FJ (2009) ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136:110–122CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dietz R (1954) Multiple Geschlechtschromosomen bei dem Ostracoden Notodromas monacha. Chromosoma 6:397–418CrossRefPubMedGoogle Scholar
  16. Edwards CL (1910) The sex determining chromosomes in Ascaris. Science 31:514–515CrossRefPubMedGoogle Scholar
  17. Flaquer A, Rappold GA, Wienker TF, Fischer C (2008) The human pseudoautosomal regions: a review for genetic epidemiologists. E J Hum Genet 16:771–779CrossRefGoogle Scholar
  18. Forer A, Ferraro-Gideon J, Berns M (2013) Distance segregation of sex chromosomes in crane-fly spermatocytes studied using laser microbeam irradiations. Protoplasma 250:1045–1055CrossRefPubMedGoogle Scholar
  19. Geinitz B (1915) Über Abweichungen bei der Eireifung von Ascaris. Arch f Zellf 18:588–633Google Scholar
  20. Gillies SC, Lane FM, Paik W, Pyrtel K, Wallace NT, Gilliland WD (2013) Nondisjunctional segregations in Drosophila female meiosis I are preceded by homolog malorientation at metaphase arrest. Genetics 193:443–451CrossRefPubMedPubMedCentralGoogle Scholar
  21. Goldstein P (1977) Spermatogenesis and spermiogenesis in Ascaris lumbricoides var. suum. J Morphol 154:317–338CrossRefPubMedGoogle Scholar
  22. Goldstein P (1978) Ultrastructural analysis of sex determination in Ascaris lumbricoides var. suum. Chromosoma 66:59–69CrossRefGoogle Scholar
  23. Honda T, Suzuki H, Itoh M (1977) An unusual sex chromosome constitution found in the amami spinous country-rat, Tokudaia osmensis osmensis. Jpn J Genet 52:247–249CrossRefGoogle Scholar
  24. Hughes SE, Gililand WD, Cotitta JL, Takeo S, Collins KA, Hawley RS (2009) Heterochromatic threads connect oscillating chromosomes during prometaphase I in Drosophila oocytes. PLoS Genet. E1000348Google Scholar
  25. Hughes-Schrader S (1943) Polarization, kinetochore movements, and bivalent structure in the meiosis of male mantids. Biol Bull 85:265–300CrossRefGoogle Scholar
  26. Hughes-Schrader S (1948) Cytology of coccids (Coccoidea-Homoptera). Adv Genet 35:127–203CrossRefPubMedGoogle Scholar
  27. Hunt P, LeMaire R, Embury P, Sheean L, Mroz K (1995) Analysis of chromosome behavior in intake mammalian oocytes: monitoring the segregation of a univalent chromosome during female meiosis. Hum Mol Gen 4:2007–2012CrossRefPubMedGoogle Scholar
  28. Jaramillo-Lambert A, Engebrecht J (2010) A single unpaired and transcriptionally silenced X chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line. Genetics 184:613–628CrossRefPubMedPubMedCentralGoogle Scholar
  29. John B, Claridge MF (1974) Chromosome variation in British populations of Oncopsis (Hemiptera-Cicadellidae). Chromosoma 46:77–89CrossRefPubMedGoogle Scholar
  30. Jorgensen EM, Mango SE (2002) The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet 3:356–369CrossRefPubMedGoogle Scholar
  31. Just W, Baumstark A, Süss A, Graphodatsky A, Rens W, Schäfer N, Bakloushinskaya I, Hameister H, Vogel W (2007) Ellobius lutescens: sex determination and sex chromosome. Sexual Dev 1:211–221CrossRefGoogle Scholar
  32. Kautzsch G (1913) Studien über Entwicklungsanomalien bei Ascaris II. Arch f Entwicklungsmech d Organismen 35:642–691CrossRefGoogle Scholar
  33. Kolomiets OL, Vorontsov NN, Lyapunova EA, Mazurova TF (1991) Ultrastructure, meiotic behavior, and evolution of sex chromosomes of the genus Ellobius. Genetica 84:179–189CrossRefGoogle Scholar
  34. Král J, Musilová J, Št'áhlavský F, Rezác M, Akan Z, Edwards RL, Coyle FA, Almerje CR (2006) Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Res 14:859–880CrossRefPubMedGoogle Scholar
  35. LaFountain JR, Cohan CS, Oldenbourg R (2012) Pac-man motility of kinetochores unleashed by laser microsurgery. Mol Biol Cell 23:3133–3142CrossRefPubMedPubMedCentralGoogle Scholar
  36. LeMaire-Adkins R, Hunt PA (2000) Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 156:775–783PubMedPubMedCentralGoogle Scholar
  37. Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR Jr, Luo ZG, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139CrossRefPubMedGoogle Scholar
  38. McClung CE (1902) The accessory chromosome—sex determinant? Biol Bull 3:43–84CrossRefGoogle Scholar
  39. Melters DP, Paliulis LV, Korf IF, Chan SWL (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 20:579–593CrossRefPubMedGoogle Scholar
  40. Montgomery TH (1910) Are particular chromosomes sex determinants? Biol Bull 19:1–17CrossRefGoogle Scholar
  41. Morris T (1968) The XO and OY chromosome constitutions in the mouse. Genet Res 12:125–137CrossRefPubMedGoogle Scholar
  42. Nagaoka SI, Hodges CA, Albertini DF, Hunt PA (2011) Oocyte-specific differences in cell cycle control create an innate susceptibility to meiotic errors. Curr Biol 21:651–657CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nicklas RB (1961) Recurrent pole-to-pole movements of the sex chromosome during prometaphase I in Melanoplus differentials spermatocytes. Chromosoma 12:97–115CrossRefPubMedGoogle Scholar
  44. Nicklas RB, Campbell MS, Ward SC, Gorbsky GJ (1998) Tension-sensitive kinetochore phosphorylation in vitro. J Cell Sci 111:3189–3196PubMedGoogle Scholar
  45. Nicklas RB, Waters JC, Salmon ED, Ward SC (2001) Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J Cell Sci 114:4173–4183PubMedGoogle Scholar
  46. Page J, Viera A, Parra MT, de la Fuente R, Suja JA, Prieto I, Barbero JL, Rufas JS, Berríos S, Fernández-Donoso R (2006) Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis. PLoS Genet 2(8):e136CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pardo-Manuel de Villena F, Sapienza C (2001) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12:331–339CrossRefPubMedGoogle Scholar
  48. Pelletier L, O’Toole E, Schwager A, Hyman AA, Müller-Reichert T (2006) Centriole assembly in Caenorhabditis elegans. Nature 444:619–623CrossRefPubMedGoogle Scholar
  49. Peters N, Perez DE, Song MH, Liu Y, Müller-Reichert T, Caron C, Kemphues KJ, O’Connell K (2010) Control of mitotic and meiotic centriole duplication by the PLK4-related kinase ZYG-1. J Cell Sci 123:795–805CrossRefPubMedPubMedCentralGoogle Scholar
  50. Revell SH (1947) Controlled X-segregation at meiosis in Tegenaria. Heredity 1:337–347CrossRefGoogle Scholar
  51. Schrader F (1935) Notes on the mitotic behavior of long chromosomes. Cytologia 6:422–430CrossRefGoogle Scholar
  52. Shakes DC, Wu JC, Sadler PL, LaPrade K, Moore LL, Noritake A, Chu DS (2009) Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. PLoS Genet 5:e1000611CrossRefPubMedPubMedCentralGoogle Scholar
  53. Shakes DC, Neva BJ, Huynh H, Chaudhuri J, Pires da Silva A (2011) Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nat Commun 2:157CrossRefPubMedGoogle Scholar
  54. Soullier S, Hanni C, Catzeflis F, Berta F, Laudet V (1998) Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm Genome 9:590–592CrossRefPubMedGoogle Scholar
  55. Srayko M, O’Toole ET, Hyman AA, Müller-Reichert T (2006) Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr Biol 16:1944–1949CrossRefPubMedGoogle Scholar
  56. Sutou S, Mitsui Y, Tsuchiya K (2001) Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mamm Genome 12:17–21CrossRefPubMedGoogle Scholar
  57. Sutton WS (1902) On the morphology of the chromosome group in Brachystola magna. Biol Bull 4:24–39CrossRefGoogle Scholar
  58. Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–241CrossRefGoogle Scholar
  59. Theurkauf WE, Hawley RS (1992) Meiotic spindle assembly in Drosophila females—behavior of nonexchange chromosomes and the effects of mutations in the Nod kinesin-like protein. J Cell Sci 115:1541–1549Google Scholar
  60. Turner JM (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831CrossRefPubMedGoogle Scholar
  61. Welshons WJ, Russell LB (1959) The Y-chromosome as the bearer of male determining factors in the mouse. Proc Natl Acad Sci U S A 45:560–566CrossRefPubMedPubMedCentralGoogle Scholar
  62. White MJD (1977), Animal Cytology and Evolution. Cambridge University PressGoogle Scholar
  63. White MJD (1940) The heteropycnosis of sex chromosomes and its interpretation in terms of spiral structure. J Genet 40:67–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gunar Fabig
    • 1
  • Thomas Müller-Reichert
    • 1
  • Leocadia V. Paliulis
    • 2
  1. 1.Experimental Center, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  2. 2.Biology DepartmentBucknell UniversityLewisburgUSA

Personalised recommendations