Advertisement

Chromosoma

, Volume 125, Issue 1, pp 163–172 | Cite as

Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations

  • Chetan PatokarEmail author
  • Adel Sepsi
  • Trude Schwarzacher
  • Masahiro Kishii
  • J. S. Heslop-Harrison
Original Article

Abstract

Thinopyrum bessarabicum (2n = 2x = 14, JJ or EbEb) is a valuable source of genes for bread wheat (2n = 6x = 42) improvement because of its salinity tolerance and disease resistance. Development of wheat-Th. bessarabicum translocation lines by backcrossing the amphiploid in the absence of the Ph1 gene (allowing intergenomic recombination) can assist its utilization in wheat improvement. In this study, six novel wheat-Th. bessarabicum translocation lines involving different chromosome segments (T4BS.4BL-4JL, T6BS.6BL-6JL, T5AS.5AL-5JL, T5DL.5DS-5JS, T2BS.2BL-2JL, and the whole arm translocation T1JS.1AL) were identified and characterized using genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH). No background translocations between wheat genomes were observed. The involvement of five of the seven chromosomes and small terminal segments of Th. bessarabicum chromosome arm were important, contributing to both reduced linkage drag of the derived lines by minimizing agronomically deleterious genes from the alien species and high stability including transmission of the alien segment. All three wheat genomes were involved in the translocations with the alien chromosome, and GISH showed the Th. bessarabicum genome was more closely related to the D genome in wheat. All the introgression lines were disomic, stable, and with good morphological characters.

Keywords

Wheat Chromosome Translocation Line Alien Chromosome Recombinant Chromosome Wheat Streak Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank “Monsanto Beachell-Borlaug International Fellowship” (MBBISP) program for funding the PhD work of Chetan Patokar and the EU Marie Curie fellowship (FP7-PEOPLE-2013-IEF 625835) to Adél Sepsi. The IAEA-FAO Cooperative Research Project “Climate Proofing of Food Crops: Genetic Improvement for Adaptation to High Temperatures in Drought Prone Areas and Beyond,” D2.30.29, is acknowledged by Trude Schwarzacher and J.S. Heslop-Harrison.

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Able JA, Langridge P (2006) Wild sex in the grasses. Trends Plant Sci 11:261–263. doi: 10.1016/j.tplants.2006.04.004 CrossRefPubMedGoogle Scholar
  2. Ali N (2012) Molecular markers, cytogenetics and epigenetics to characterize wheat-Thinopyrum hybrid lines conferring wheat streak mosaic virus resistance. Dissertation, University of LeicesterGoogle Scholar
  3. An D, Zheng Q, Zhou Y, Ma P, Lv Z, Li L, Li B, Luo Q, Xu H, Xu Y (2013) Molecular cytogenetic characterization of a new wheat–rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res 21:419–432. doi: 10.1007/s10577-013-9366-8 CrossRefPubMedGoogle Scholar
  4. Anamthawat-Jonsson K, Heslop-Harrison J (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158. doi: 10.1007/BF00277052 CrossRefPubMedGoogle Scholar
  5. Ayala-Navarrete L, Bariana H, Singh R, Gibson J, Mechanicos A, Larkin PJ (2007) Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. Theor Appl Genet 116:63–75. doi: 10.1007/s00122-007-0647-5 CrossRefPubMedGoogle Scholar
  6. Ayala-Navarrete L, Mechanicos A, Gibson J, Singh D, Bariana H, Fletcher J, Shorter S, Larkin PJ (2013) The pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theor Appl Genet 126:2467–2475. doi: 10.1007/s00122-013-2147-0 CrossRefPubMedGoogle Scholar
  7. Bardsley D, Cuadrado A, Jack P, Harrison G, Castilho A, Heslop-Harrison J (1999) Chromosome markers in the tetraploid wheat Aegilops ventricosa analysed by in situ hybridization. Theor Appl Genet 99:300–304. doi: 10.1007/s001220051236
  8. Bedbrook J, Jones J, O’Dell M, Thompson R, Flavell R (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560. doi: 10.1016/0092-8674(80)90529-2 CrossRefPubMedGoogle Scholar
  9. Borlaug NE (1983) Contributions of conventional plant breeding to food production. Science 219:689–693. doi: 10.1126/science.219.4585.689 CrossRefPubMedGoogle Scholar
  10. Brown JW, Kemble RJ, Law CN, Flavell RB (1979) Control of endosperm proteins in Triticum aestivum (var. Chinese spring) and Aegilops umbellulata by homoeologous group 1 chromosomes. Genetics 93:189–200. doi: 10.1007/s001220050413 PubMedCentralPubMedGoogle Scholar
  11. Castilho A, Miller T, Heslop-Harrison J (1996) Physical mapping of translocation breakpoints in a set of wheat-Aegilops umbellulata recombinant lines using in situ hybridization. Theor Appl Genet 93:816–825. doi: 10.1007/BF00224081
  12. Castilho A, Miller T, Heslop-Harrison J (1997) Analysis of a set of homoeologous group 1 wheat-Aegilops umbellulata recombinant chromosome lines using genetic markers. Theor Appl Genet 94:293–297. doi: 10.1007/s001220050413 CrossRefGoogle Scholar
  13. Chen Q (2005) Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res 109:350–359. doi: 10.1159/000082419 CrossRefPubMedGoogle Scholar
  14. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 48:387–399. doi: 10.1023/A:1006480722854 CrossRefGoogle Scholar
  15. Cuadrado A, Cardoso M, Jouve N (2008) Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 120:210–219. doi: 10.1159/000121069 CrossRefPubMedGoogle Scholar
  16. Cuadrado A, Jouve N (2002) Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J Hered 93:339–345. doi: 10.1093/jhered/93.5.339 CrossRefPubMedGoogle Scholar
  17. Danilova TV, Friebe B, Gill BS (2012) Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121:597–611. doi: 10.1007/s00412-012-0384-7 CrossRefPubMedGoogle Scholar
  18. Falke K, Sušić Z, Wilde P, Wortmann H, Möhring J, Piepho H-P, Geiger H, Miedaner T (2009) Testcross performance of rye introgression lines developed by marker-assisted backcrossing using an Iranian accession as donor. Theor Appl Genet 118:1225–1238. doi: 10.1007/s00122-009-0976-7 CrossRefPubMedGoogle Scholar
  19. Fedak G, Han F (2005) Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 109:360–367. doi: 10.1159/000082420 CrossRefPubMedGoogle Scholar
  20. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32. doi: 10.1016/j.tig.2007.11.001 CrossRefPubMedGoogle Scholar
  21. Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86:141–149. doi: 10.1007/BF00222072 PubMedGoogle Scholar
  22. Friebe B, Jiang J, Raupp W, McIntosh R, Gill B (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. doi: 10.1007/BF00035277 CrossRefGoogle Scholar
  23. Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, Mcintosh RA (1992a) Characterization of rust-resistant wheat Agropyron intermedium derivatives by C-Banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782. doi: 10.1007/BF00226697
  24. Friebe B, Mukai Y, Gill BS, Cauderon Y (1992b) C-Banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat X Ag. intermedium amphiploid, and 6 derived chromosome addition lines. Theor Appl Genet 84:899–905. doi: 10.1007/BF00227402
  25. Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F (2012) Molecular cytogenetic characterization of wheat—Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium head blight. J Genet Genomics 39:103–110. doi: 10.1016/j.jgg.2011.11.008 CrossRefPubMedGoogle Scholar
  26. Gale M, Sharp P, Chao S, Law C (1989) Applications of genetic markers in cytogenetic manipulation of the wheat genomes. Genome 31:137–142. doi: 10.1139/g89-025 CrossRefGoogle Scholar
  27. Gerlach W, Dyer T (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5s rRNA genes. Nucleic Acids Res 8:4851–4865. doi: 10.1093/nar/8.21.4851 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci 108:7657–7658. doi: 10.1073/pnas.1104845108 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Gorham J, McDonnell E, Budrewicz E, Jones RW (1985) Salt tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. J Exp Bot 36:1021–1031. doi: 10.1093/jxb/36.7.1021 CrossRefGoogle Scholar
  30. Graybosch RA, Peterson C, Baenziger PS, Baltensperger DD, Nelson LA, Jin Y, Kolmer J, Seabourn B, French R, Hein G (2009) Registration of ‘mace’ hard red winter wheat. J Plant Regist 3:51–56. doi: 10.3198/jpr2008.06.0345crc CrossRefGoogle Scholar
  31. Heslop-Harrison JS (1991) The molecular cytogenetics of plants. J Cell Sci 100:15–21Google Scholar
  32. Heslop-Harrison J, Leitch A, Schwarzacher T, Anamthawat-Jonsson K (1990) Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity 65:385–392. doi: 10.1038/hdy.1990.108 CrossRefGoogle Scholar
  33. Heslop-Harrison J, Schwarzacher T (2012) Genetics and genomics of crop domestication. In: Altman A and Hasegawa PM (ed) Plant biotechnology and agriculture: prospects for the 21st century. Elsevier, pp1-16Google Scholar
  34. Hu L-J, Liu C, Zeng Z-X, Li G-R, Song X-J, Yang Z-J (2012) Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes Genom 34:67–75. doi: 10.1007/s13258-011-0153-7 CrossRefGoogle Scholar
  35. Islam-Faridi MN (1988) Genetical studies of grain protein and developmental charcters in wheat. Dissertation, University of CambridgeGoogle Scholar
  36. Jiang J, Friebe B, Gill BS (1993) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212. doi: 10.1007/BF00036700 CrossRefGoogle Scholar
  37. King I, Purdie K, Rezanoor H, Koebner R, Miller T, Reader S, Nicholson P (1993) Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPIDs) and genomic in situ hybridization. Theor Appl Genet 86:895–900. doi: 10.1007/BF00211038 PubMedGoogle Scholar
  38. King IP, Forster BP, Law CC, Cant KA, Orford SE, Gorham J, Reader S, Miller TE (1997) Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New Phyto 137:75–81. doi: 10.1046/j.1469-8137.1997.00828.x CrossRefGoogle Scholar
  39. Kishii M, Nagaki K, Tsujimoto H (2001) A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosome Res 9:417–428. doi: 10.1023/A:1016739719421 CrossRefPubMedGoogle Scholar
  40. Kishii M, Dou Q, Garg M, Ito M, Tanaka H, Tsujimoto H (2010) Production of wheat-Psathyrostachys huashanica chromosome addition lines. Genes Genet Syst 85:281–286. doi: 10.1266/ggs.85.281 CrossRefPubMedGoogle Scholar
  41. Knott D (1961) The inheritance of rust resistance. Vi. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can J Plant Sci 41:109–123. doi: 10.4141/cjps61-014 CrossRefGoogle Scholar
  42. Knott D (1968) Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol. doi:10:695-696Google Scholar
  43. Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829. doi: 10.1534/genetics.104.039180 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389. doi: 10.1007/s00122-007-0524-2 CrossRefPubMedGoogle Scholar
  45. Liang G, Wang R, Niblett C, Heyne E (1979) Registration of B-6-37-1 wheat germplasm 1 (reg. no. GP 118). Crop Sci 19:421–421CrossRefGoogle Scholar
  46. Liu WX, Danilova TV, Rouse MN, Bowden RL, Friebe B, Gill BS, Pumphrey MO (2013) Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor Appl Genet 126:1167–1177. doi: 10.1007/s00122-013-2044-6 CrossRefPubMedGoogle Scholar
  47. Lukaszewski AJ (1990) Frequency of 1RS.1AL and 1RS.1BL translocations in united states wheats. Crop Sci 30:1151–1153. doi: 10.2135/cropsci1990.0011183X003000050041x CrossRefGoogle Scholar
  48. McIntyre C, Pereira S, Moran L, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640. doi: 10.1139/g90-094 CrossRefPubMedGoogle Scholar
  49. Molnár-Láng M, Linc G, Friebe B, Bucsi J, Linc G, Sukta J (2012) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123. doi: 10.1023/A:1003840200744 CrossRefGoogle Scholar
  50. Molnár-Láng M, Linc G, Friebe BR, Sutka J (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123. doi: 10.1023/A:1003840200744
  51. Mutti JS, Baenziger PS, Graybosch RA, French R, Gill KS (2011) Registration of seven winter wheat germplasm lines carrying the Wsm1 gene for wheat streak mosaic virus resistance. J Plant Reg 5:414–417. doi: 10.3198/jpr2010.03.0169crg CrossRefGoogle Scholar
  52. Mujeeb-Kazi A et al (2013) Genetic diversity for wheat improvement as a conduit to food security. Adv Agron 122:179–257CrossRefGoogle Scholar
  53. Nagaki K, Tsujimoto H, Sasakuma T (1998) Dynamics of tandem repetitive Afa-family sequences in Triticeae, wheat-related species. J Mol Evol 47:183–189. doi: 10.1007/PL00006375 CrossRefPubMedGoogle Scholar
  54. Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593. doi: 10.1139/g97-077
  55. Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z (2010) Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. Theor Appl Genet 121:589–597. doi: 10.1007/s00122-010-1332-7 CrossRefPubMedGoogle Scholar
  56. Rayburn AL, Gill B (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255Google Scholar
  57. Ribeiro-Carvalho C, Guedes-Pinto H, Harrison G, Heslop-Harrison JS (1997) Wheat-rye chromosome translocations involving small terminal and intercalary rye chromosome segments in the Portuguese wheat landrace Barbela. Heredity 78:539–546. doi: 10.1038/hdy.1997.84 CrossRefGoogle Scholar
  58. Riley R, Chapman V, Johnson R (1968a) Introduction of yellow rust resistance of Aegilops  comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384. doi: 10.1038/217383a0
  59. Riley R, Chapman V, Johnson R (1968b) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res 12:199–219. doi: 10.1017/S0016672300011800
  60. Schlegel R, Kynast R, Schwarzacher T, Römheld V, Walter A (1993) Mapping of genes for copper efficiency in rye and the relationship between copper and iron efficiency. Plant Soil 154:61–65CrossRefGoogle Scholar
  61. Schwarzacher T, Anamthawat-Jonsson K, Harrison G, Islam A, Jia J, King I, Leitch A, Miller T, Reader S, Rogers W (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet 84:778–786PubMedGoogle Scholar
  62. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIOS Scientific, OxfordGoogle Scholar
  63. Sears E (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat: genetics in plant breeding. Brookhaven Symposia in Biology, pp 1-22Google Scholar
  64. Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. Proceedings, Fourth International Wheat Genetics Symposium, Columbia, MO, Agriculture Experiment Station, College of Agriculture, University of Missouri, Columbia, MO, pp 191-199Google Scholar
  65. Sears ER (1977) Analysis of wheat-Agropyron recombinant chromosomes: interspecific hybridization in plant breeding. Proceedings of the 8th EUCARPIA Congress, Madrid, Spain, pp 63-72Google Scholar
  66. Sepsi A, Molnár I, Szalay D, Molnár-Láng M (2008) Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834. doi: 10.1007/s00122-008-0716-4 CrossRefPubMedGoogle Scholar
  67. Sharma D, Knott D (1966) The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143. doi: 10.1139/g66-018 CrossRefGoogle Scholar
  68. Simmonds N (1993) Introgression and incorporation. Strategies for the use of crop genetic resources. Biol Rev 68:539–562. doi: 10.1111/j.1469-185X.1993.tb01243.x CrossRefGoogle Scholar
  69. Vershinin A, Svitashev S, Gummesson P-O, Salomon B, Von Bothmer R, Bryngelsson T (1994) Characterization of a family of tandemly repeated DNA sequences in Triticeae. Theor Appl Genet 89:217–225. doi: 10.1007/BF00225145 CrossRefPubMedGoogle Scholar
  70. Vrána J, Kubaláková M, Simková H, Číhalíkovái J, Lysák MA, Dolezel J (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041PubMedCentralPubMedGoogle Scholar
  71. Wang R-C, Larson S, Horton W, Chatterton N (2003a) Registration of W4909 and W4910 bread wheat germplasm lines with high salinity tolerance. Crop Sci 43:746–746CrossRefGoogle Scholar
  72. Wang R-C, Li X-M, Hu Z-M, Zhang J-Y, Larson SR, Zhang X-Y, Grieve CM, Shannon MC (2003b) Development of salinity-tolerant wheat recombinant lines from wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int J Plant Sci 164:25–33CrossRefGoogle Scholar
  73. Wang RRC (2011) Chapter 2. Agropyron and Psathyrostachys. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: cereals. Springer, Berlin, pp 77–108. doi: 10.1007/978-3-642-14228-4_2
  74. William M, Mujeeb-Kazi A (1993) Thinopyrum bessarabicum: biochemical and cytological markers for the detection of genetic introgression in its hybrid derivatives with Triticum aestivum L. Theor Appl Genet 86:365–370PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chetan Patokar
    • 1
    Email author
  • Adel Sepsi
    • 1
  • Trude Schwarzacher
    • 1
  • Masahiro Kishii
    • 2
  • J. S. Heslop-Harrison
    • 1
  1. 1.Department of BiologyUniversity of LeicesterLeicesterUK
  2. 2.International Maize and Wheat Improvement Center (CIMMYT)TexcocoMexico

Personalised recommendations