, Volume 124, Issue 2, pp 263–275 | Cite as

A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs

  • J. P. M Camacho
  • F. J. Ruiz-Ruano
  • R. Martín-Blázquez
  • M. D. López-León
  • J. Cabrero
  • P. Lorite
  • D. C. Cabral-de-Mello
  • M. Bakkali
Research Article


The desert locust (Schistocerca gregaria) has been used as material for numerous cytogenetic studies. Its genome size is estimated to be 8.55 Gb of DNA comprised in 11 autosomes and the X chromosome. Its X0/XX sex chromosome determinism therefore results in females having 24 chromosomes whereas males have 23. Surprisingly, little is known about the DNA content of this locust’s huge chromosomes. Here, we use the Feulgen Image Analysis Densitometry and C-banding techniques to respectively estimate the DNA quantity and heterochromatin content of each chromosome. We also identify three satellite DNAs using both restriction endonucleases and next-generation sequencing. We then use fluorescent in situ hybridization to determine the chromosomal location of these satellite DNAs as well as that of six tandem repeat DNA gene families. The combination of the results obtained in this work allows distinguishing between the different chromosomes not only by size, but also by the kind of repetitive DNAs that they contain. The recent publication of the draft genome of the migratory locust (Locusta migratoria), the largest animal genome hitherto sequenced, invites for sequencing even larger genomes. S. gregaria is a pest that causes high economic losses. It is thus among the primary candidates for genome sequencing. But this species genome is about 50 % larger than that of L. migratoria, and although next-generation sequencing currently allows sequencing large genomes, sequencing it would mean a greater challenge. The chromosome sizes and markers provided here should not only help planning the sequencing project and guide the assembly but would also facilitate assigning assembled linkage groups to actual chromosomes.


Integrate Optical Density Desert Locust Genome Size Evolution Chimeric Contigs satDNA Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917 and BFU2010-16438) and Plan Andaluz de Investigacion (CVI-6649 and BIO-220), and was partially performed by FEDER funds. M. Bakkali was supported by a Ramón y Cajal fellowship from the Spanish Ministerio de Ciencia e Innovación.

Supplementary material

412_2014_499_MOESM1_ESM.doc (3.4 mb)
ESM 1 (DOC 3481 kb)


  1. Anders S, Pyl PT, Huber W (2014) HTSeq—a Python framework to work with high-throughput sequencing data. bioRxiv preprint doi: 10.1101/002824
  2. Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J (2011) Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 6:e17274CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bakkali M (2011) Microevolution of cis-regulatory elements: an example from the pair-rule segmentation gene fushi tarazu in the Drosophila melanogaster subgroup. PLoS One 6:e27376CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bakkali M (2013) A bird’s-eye view on the modern genetics workflow and its potential applicability to the locust problem. C R Biol 336:375–383CrossRefPubMedGoogle Scholar
  5. Belova T, Zhan B, Wright J, Caccamo M, Asp T, Simkova H, Kent M, Bendixen C, Panitz F, Lien S, Dolezel J, Olsen OA, Sandve SR (2013) Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genomics 14:222CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627CrossRefPubMedGoogle Scholar
  7. Bensasson D, Zhang DX, Hewitt GM (2000) Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Mol Biol Evol 17:406–415CrossRefPubMedGoogle Scholar
  8. Brown AK, Wilmore PJ (1974) Location of repetitious DNA in the chromosomes of the desert locust (Schistocerca gregaria). Chromosoma 47:379–383CrossRefPubMedGoogle Scholar
  9. Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC (2013) Chromosomal mapping of repetitive DNAs in the grasshopper reveal possible ancestry of the B chromosome and H3 histone spreading. PLoS One 8:e66532CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cabral-de-Mello DC, Valente GT, Nakajima RT, Martins C (2012) Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosome Res 20:279–292CrossRefPubMedGoogle Scholar
  11. Cabrero J, Camacho JP (2008) Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res 16:595–607CrossRefPubMedGoogle Scholar
  12. Cabrero J, Bakkali M, Bugrov A, Warchalowska-Sliwa E, Lopez-Leon MD, Perfectti F, Camacho JP (2003) Multiregional origin of B chromosomes in the grasshopper Eyprepocnemis plorans. Chromosoma 112:207–211CrossRefPubMedGoogle Scholar
  13. Cabrero J, Lopez-Leon MD, Teruel M, Camacho JP (2009) Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Res 17:397–404CrossRefPubMedGoogle Scholar
  14. Camacho JPM, Viseras E, Navas-Castillo J, Cabrero J (1984) C-heterochromatin content of supernumerary chromosome segments of grasshoppers: detection of an euchromatic extra segment. Heredity 53:167–175CrossRefGoogle Scholar
  15. Camacho JPM, Cabrero J, Viseras E, Lopez-Leon MD, Navas-Castillo J, Alche JD (1991) G-banding in two species of grasshoppers and its relationship to C, N and fluorescence banding techniques. Genome 34:638–643CrossRefGoogle Scholar
  16. Craig-Cameron TA (1970) Actinomycin-D and chiasma frequency in Schistocerca gregaria (Forskal). Chromosoma 30:169–179CrossRefPubMedGoogle Scholar
  17. Craig-Cameron T, Jones GH (1970) The analysis of exchanges in tritium-labelled meiotic chromosomes. 1. Heredity (Edinb) 25:223–232CrossRefGoogle Scholar
  18. Csik L, Koller PC (1939) Relational coiling and chiasma frequency. Zeitschr Zellforsch Microsk Anat Abt B Chromosoma 1:191–196Google Scholar
  19. Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt Notophthalmus. Cell 24:649–659CrossRefPubMedGoogle Scholar
  20. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128, author reply 129CrossRefPubMedGoogle Scholar
  21. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M (2009) Geneious 4.8. Biomatters Auckland, New ZealandGoogle Scholar
  22. Dutt K (1966) Karyotype study of a fresh water snake Cerberus rhynohops. (Abstr). In: Proc Int Symp Animal Venoms Inst. Butantan, Sao Paulo, pp 15–16Google Scholar
  23. Epstein LM, Mahon KA, Gall JG (1986) Transcription of a satellite DNA in the newt. J Cell Biol 103:1137–1144CrossRefPubMedGoogle Scholar
  24. Ferrier DE, Akam M (1996) Organization of the Hox gene cluster in the grasshopper, Schistocerca gregaria. Proc Natl Acad Sci U S A 93:13024–13029CrossRefPubMedCentralPubMedGoogle Scholar
  25. Fox DP (1966a) The effect of X-rays on the chromosomes of locust embryos: II Chromatid interchanges and the organization of the interphase nucleus. Chromosoma 20:173–194CrossRefGoogle Scholar
  26. Fox DP (1966b) The effects of X-rays on the chromosomes of locust embryos. I. The early responses. Chromosoma 19:300–316CrossRefPubMedGoogle Scholar
  27. Fox DP (1967a) The effects of X-rays on the chromosomes of locust embryos. 3. The chromatid aberration types. Chromosoma 20:386–412CrossRefGoogle Scholar
  28. Fox DP (1967b) The effects of X-rays on the chromosomes of locust embryos. IV. Dose–response and variation in sensitivity of the cell cycle for the induction of chromatid aberrations. Chromosoma 20:413–441CrossRefGoogle Scholar
  29. Fox DP (1970) A non-doubling DNA series in somatic tissues of the locusts Schistocerca gregaria (Forskal) and Locusta migratoria (Linn.). Chromosoma 29:446–461CrossRefPubMedGoogle Scholar
  30. Fox DP (1973) The control of chiasma distribution in the locust, Schistocerca gregaria (Forskal). Chromosoma 43:289–328CrossRefPubMedGoogle Scholar
  31. Fox DP, Santos JL (1985) N-bands and nucleolus expression in Schistocerca gregaria and Locusta migratoria. Heredity 54:333–341CrossRefGoogle Scholar
  32. Fox DP, Carter KC, Hewitt GM (1973) Giemsa banding and chiasma distribution in the desert locust. Heredity (Edinb) 31:272–276CrossRefGoogle Scholar
  33. Gaubatz JW, Cutler RG (1990) Mouse satellite DNA is transcribed in senescent cardiac muscle. J Biol Chem 265:17753–17758PubMedGoogle Scholar
  34. Gordon A, Hannon GJ (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. Unpublished
  35. Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699–708CrossRefPubMedGoogle Scholar
  36. Hagele K (1979) Characterization of heterochromatin in Schistocerca gregaria by C- and N-banding methods. Chromosoma 70:239–250CrossRefGoogle Scholar
  37. Hardie DC, Gregory TR, Hebert PD (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749CrossRefPubMedGoogle Scholar
  38. Henderson SA (1962) Temperature and chiasma formation in Schistocerca gregaria. Chromosoma 13:437–463CrossRefGoogle Scholar
  39. Henderson SA (1963) Chiasma distribution at diplotene in a locust. Heredity 18:173CrossRefGoogle Scholar
  40. Henderson SA (1964) RNA synthesis during male meiosis and spermiogenesis. Chromosoma 15:345–366CrossRefGoogle Scholar
  41. Henderson SA (1988) Four effects of elevated temperature on chiasma formation in the locust Schistocerca gregaria. Heredity 60:387–401CrossRefGoogle Scholar
  42. Hori T, Suzuki Y, Solovei I, Saitoh Y, Hutchison N, Ikeda JE, Macgregor H, Mizuno S (1996) Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome. Chromosome Res 4:411–426CrossRefPubMedGoogle Scholar
  43. Jain HK, Singh U (1967) Actinomycin D induced chromosome breakage and suppression of meiosis in the locust, Schistocerca gregaria. Chromosoma 21:463–471CrossRefPubMedGoogle Scholar
  44. Jamrich M, Warrior R, Steele R, Gall JG (1983) Transcription of repetitive sequences on Xenopus lampbrush chromosomes. Proc Natl Acad Sci U S A 80:3364–3367CrossRefPubMedCentralPubMedGoogle Scholar
  45. John B, Henderson SA (1962) Asynapsis and polyploidy in Schistocerca paranensis. Chromosoma 13:111–147CrossRefPubMedGoogle Scholar
  46. John B, Hewitt GM (1966) Karyotype stability and DNA variability in the Acrididae. Chromosoma 20:155–172CrossRefGoogle Scholar
  47. John B, Naylor B (1961) Anomalous chromosome behaviour in germ line of Schistocerca gregaria. Heredity 16:187–198CrossRefGoogle Scholar
  48. Jones GH (1977) A test for early termination of chiasmata in diplotene spermatocytes of Schistocerca gregaria. Chromosoma 63:287–294CrossRefGoogle Scholar
  49. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedCentralPubMedGoogle Scholar
  50. Lorite P, Renault S, Rouleux-Bonnin F, Bigot S, Periquet G, Palomeque T (2002) Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae). Genome 45:609–616CrossRefPubMedGoogle Scholar
  51. Lorite P, Torres MI, Palomeque T (2013) Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). Bull Entomol Res 103:538–546CrossRefPubMedGoogle Scholar
  52. McClintock B (1934) The relationship of a particular chromosomal element to the development of nucleoli in Zea mays. Z Zellforsch 21:294–328CrossRefGoogle Scholar
  53. Meyne J, Hirai H, Imai HT (1995) FISH analysis of the telomere sequences of bulldog ants (Myrmecia: Formicidae). Chromosoma 104:14–18PubMedGoogle Scholar
  54. Munoz-Pajares AJ, Martinez-Rodriguez L, Teruel M, Cabrero J, Camacho JP, Perfectti F (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853–863CrossRefPubMedCentralPubMedGoogle Scholar
  55. Novak P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378CrossRefPubMedCentralPubMedGoogle Scholar
  56. Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793CrossRefPubMedGoogle Scholar
  57. Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM (2007) The mode and tempo of genome size evolution in eukaryotes. Genome Res 17:594–601CrossRefPubMedCentralPubMedGoogle Scholar
  58. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437CrossRefPubMedGoogle Scholar
  59. Palomeque T, Lorite P (2008) Satellite DNA in insects: a review. Heredity (Edinb) 100:564–573CrossRefGoogle Scholar
  60. Pezer Z, Ugarkovic D (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 9:587–595CrossRefPubMedGoogle Scholar
  61. Rasch EM, Rasch RW (1981) Cytophotometric determination of genome size for two species of cave crickets (Orthoptera, Rhaphidophoridae). J Histochem Cytochem 29:885Google Scholar
  62. Renault S, Rouleux-Bonnin F, Periquet G, Bigot Y (1999) Satellite DNA transcription in Diadromus pulchellus (Hymenoptera). Insect Biochem Mol Biol 29:103–111CrossRefPubMedGoogle Scholar
  63. Rouleux-Bonnin F, Renault S, Bigot Y, Periquet G (1996) Transcription of four satellite DNA subfamilies in Diprion pini (Hymenoptera, Symphyta, Diprionidae). Eur J Biochem 238:752–759CrossRefPubMedGoogle Scholar
  64. Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist progremmers. In: Bioinformatics methods and protocols. Humana Press, pp 365–386Google Scholar
  65. Rufas JS, Gosalvez J (1982) Development of silver stained structures during spermatogenesis of Schistocerca gregaria (Forsk.) (Orthoptera:Acrididae). Caryologia 35:261–267CrossRefGoogle Scholar
  66. Ruiz-Ruano FJ, Ruiz-Estevez M, Rodriguez-Perez J, Lopez-Pino JL, Cabrero J, Camacho JP (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126CrossRefPubMedGoogle Scholar
  67. Solovei IV, Joffe BI, Gaginskaya ER, Macgregor HC (1996) Transcription of lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement. Chromosome Res 4:588–603CrossRefPubMedGoogle Scholar
  68. Timothy D, Littlewood J, Olson P (2000) Small subunit rDNA and the platyhelminthes: signal, noise, conflict and compromise. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the platyhelminthes. CRC Press, UK, pp 381–330, 380Google Scholar
  69. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational chalenges and solutions. Nat Rev Genet 13:36–46Google Scholar
  70. Varadaraj K, Skinner DM (1994) Cytoplasmic localization of transcripts of a complex G + C-rich crab satellite DNA. Chromosoma 103:423–431CrossRefPubMedGoogle Scholar
  71. Varley JM, Macgregor HC, Nardi I, Andrews C, Erba HP (1980) Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage in Triturus cristatus carnifex. Chromosoma 80:289–307CrossRefPubMedGoogle Scholar
  72. Vaughan HE, Heslop-Harrison JS, Hewitt GM (1999) The localization of mitochondrial sequences to chromosomal DNA in orthopterans. Genome 42:874–880CrossRefGoogle Scholar
  73. Wang S, Lorenzen MD, Beeman RW, Brown SJ (2008) Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol 9:R61CrossRefPubMedCentralPubMedGoogle Scholar
  74. Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei J, Ma C, Wang Y, He J, Luo Y, Wang Z, Guo X, Guo W, Zhang Y, Yang M, Hao S, Chen B, Ma Z, Yu D, Xiong Z, Zhu Y, Fan D, Han L, Wang B, Chen Y, Wang J, Yang L, Zhao W, Feng Y, Chen G, Lian J, Li Q, Huang Z, Yao X, Lv N, Zhang G, Li Y, Zhu B, Kang L (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957PubMedCentralPubMedGoogle Scholar
  75. Westerman M (1967) The effect of X-irradiation on male meiosis in Schistocerca gregaria (Forskal). Chromosoma 22:401–416CrossRefGoogle Scholar
  76. Westerman M (1968) The effect of x-irradiation on male meiosis in Schistocerca gregaria (Forskal). II. The induction of chromosome mutations. Chromosoma 24:17–36CrossRefPubMedGoogle Scholar
  77. Westerman M, Barton NH, Hewitt GM (1987) Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity 58:221–228CrossRefGoogle Scholar
  78. White MJD (1934) The influence of temperature on chiasma frequency. J Genet 29:203–216CrossRefGoogle Scholar
  79. Wilmore PJ, Brown AK (1975) Molecular properties of orthopteran DNA. Chromosoma 51:337–345CrossRefPubMedGoogle Scholar
  80. Wolf KW (1996) The structure of condensed chromosomes in mitosis and meiosis of insects. Int J Insect Morphol Embryol 25:37–62CrossRefGoogle Scholar
  81. Wolf KW, Sumner AT (1996) Scanning electron microscopy of heterochromatin in chromosome spreads of male germ cells in Schistocerca gregaria (Acrididae, Orthoptera) after trypsinization. Biotech Histochem 71:237–244CrossRefPubMedGoogle Scholar
  82. Wolf KW, Turner BM (1996) The pattern of histone H4 acetylation on the X chromosome during spermatogenesis of the desert locust Schistocerca gregaria. Genome 39:854–865CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. P. M Camacho
    • 1
  • F. J. Ruiz-Ruano
    • 1
  • R. Martín-Blázquez
    • 1
  • M. D. López-León
    • 1
  • J. Cabrero
    • 1
  • P. Lorite
    • 2
  • D. C. Cabral-de-Mello
    • 3
  • M. Bakkali
    • 1
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Biología Experimental, Área de GenéticaUniversidad de JaénJaénSpain
  3. 3.Departamento de Biologia, Instituto de Biociências/IBUniv Estadual PaulistaRio ClaroBrazil

Personalised recommendations