Skip to main content

Advertisement

Log in

A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs

Chromosoma Aims and scope Submit manuscript

Abstract

The desert locust (Schistocerca gregaria) has been used as material for numerous cytogenetic studies. Its genome size is estimated to be 8.55 Gb of DNA comprised in 11 autosomes and the X chromosome. Its X0/XX sex chromosome determinism therefore results in females having 24 chromosomes whereas males have 23. Surprisingly, little is known about the DNA content of this locust’s huge chromosomes. Here, we use the Feulgen Image Analysis Densitometry and C-banding techniques to respectively estimate the DNA quantity and heterochromatin content of each chromosome. We also identify three satellite DNAs using both restriction endonucleases and next-generation sequencing. We then use fluorescent in situ hybridization to determine the chromosomal location of these satellite DNAs as well as that of six tandem repeat DNA gene families. The combination of the results obtained in this work allows distinguishing between the different chromosomes not only by size, but also by the kind of repetitive DNAs that they contain. The recent publication of the draft genome of the migratory locust (Locusta migratoria), the largest animal genome hitherto sequenced, invites for sequencing even larger genomes. S. gregaria is a pest that causes high economic losses. It is thus among the primary candidates for genome sequencing. But this species genome is about 50 % larger than that of L. migratoria, and although next-generation sequencing currently allows sequencing large genomes, sequencing it would mean a greater challenge. The chromosome sizes and markers provided here should not only help planning the sequencing project and guide the assembly but would also facilitate assigning assembled linkage groups to actual chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Anders S, Pyl PT, Huber W (2014) HTSeq—a Python framework to work with high-throughput sequencing data. bioRxiv preprint doi:10.1101/002824

  • Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J (2011) Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 6:e17274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakkali M (2011) Microevolution of cis-regulatory elements: an example from the pair-rule segmentation gene fushi tarazu in the Drosophila melanogaster subgroup. PLoS One 6:e27376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakkali M (2013) A bird’s-eye view on the modern genetics workflow and its potential applicability to the locust problem. C R Biol 336:375–383

    Article  PubMed  Google Scholar 

  • Belova T, Zhan B, Wright J, Caccamo M, Asp T, Simkova H, Kent M, Bendixen C, Panitz F, Lien S, Dolezel J, Olsen OA, Sandve SR (2013) Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genomics 14:222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Bensasson D, Zhang DX, Hewitt GM (2000) Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Mol Biol Evol 17:406–415

    Article  CAS  PubMed  Google Scholar 

  • Brown AK, Wilmore PJ (1974) Location of repetitious DNA in the chromosomes of the desert locust (Schistocerca gregaria). Chromosoma 47:379–383

    Article  CAS  PubMed  Google Scholar 

  • Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC (2013) Chromosomal mapping of repetitive DNAs in the grasshopper reveal possible ancestry of the B chromosome and H3 histone spreading. PLoS One 8:e66532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabral-de-Mello DC, Valente GT, Nakajima RT, Martins C (2012) Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosome Res 20:279–292

    Article  CAS  PubMed  Google Scholar 

  • Cabrero J, Camacho JP (2008) Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res 16:595–607

    Article  CAS  PubMed  Google Scholar 

  • Cabrero J, Bakkali M, Bugrov A, Warchalowska-Sliwa E, Lopez-Leon MD, Perfectti F, Camacho JP (2003) Multiregional origin of B chromosomes in the grasshopper Eyprepocnemis plorans. Chromosoma 112:207–211

    Article  CAS  PubMed  Google Scholar 

  • Cabrero J, Lopez-Leon MD, Teruel M, Camacho JP (2009) Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Res 17:397–404

    Article  CAS  PubMed  Google Scholar 

  • Camacho JPM, Viseras E, Navas-Castillo J, Cabrero J (1984) C-heterochromatin content of supernumerary chromosome segments of grasshoppers: detection of an euchromatic extra segment. Heredity 53:167–175

    Article  Google Scholar 

  • Camacho JPM, Cabrero J, Viseras E, Lopez-Leon MD, Navas-Castillo J, Alche JD (1991) G-banding in two species of grasshoppers and its relationship to C, N and fluorescence banding techniques. Genome 34:638–643

    Article  Google Scholar 

  • Craig-Cameron TA (1970) Actinomycin-D and chiasma frequency in Schistocerca gregaria (Forskal). Chromosoma 30:169–179

    Article  CAS  PubMed  Google Scholar 

  • Craig-Cameron T, Jones GH (1970) The analysis of exchanges in tritium-labelled meiotic chromosomes. 1. Heredity (Edinb) 25:223–232

    Article  CAS  Google Scholar 

  • Csik L, Koller PC (1939) Relational coiling and chiasma frequency. Zeitschr Zellforsch Microsk Anat Abt B Chromosoma 1:191–196

    Google Scholar 

  • Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt Notophthalmus. Cell 24:649–659

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128, author reply 129

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M (2009) Geneious 4.8. Biomatters Auckland, New Zealand

    Google Scholar 

  • Dutt K (1966) Karyotype study of a fresh water snake Cerberus rhynohops. (Abstr). In: Proc Int Symp Animal Venoms Inst. Butantan, Sao Paulo, pp 15–16

  • Epstein LM, Mahon KA, Gall JG (1986) Transcription of a satellite DNA in the newt. J Cell Biol 103:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Ferrier DE, Akam M (1996) Organization of the Hox gene cluster in the grasshopper, Schistocerca gregaria. Proc Natl Acad Sci U S A 93:13024–13029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox DP (1966a) The effect of X-rays on the chromosomes of locust embryos: II Chromatid interchanges and the organization of the interphase nucleus. Chromosoma 20:173–194

    Article  CAS  Google Scholar 

  • Fox DP (1966b) The effects of X-rays on the chromosomes of locust embryos. I. The early responses. Chromosoma 19:300–316

    Article  CAS  PubMed  Google Scholar 

  • Fox DP (1967a) The effects of X-rays on the chromosomes of locust embryos. 3. The chromatid aberration types. Chromosoma 20:386–412

    Article  Google Scholar 

  • Fox DP (1967b) The effects of X-rays on the chromosomes of locust embryos. IV. Dose–response and variation in sensitivity of the cell cycle for the induction of chromatid aberrations. Chromosoma 20:413–441

    Article  Google Scholar 

  • Fox DP (1970) A non-doubling DNA series in somatic tissues of the locusts Schistocerca gregaria (Forskal) and Locusta migratoria (Linn.). Chromosoma 29:446–461

    Article  CAS  PubMed  Google Scholar 

  • Fox DP (1973) The control of chiasma distribution in the locust, Schistocerca gregaria (Forskal). Chromosoma 43:289–328

    Article  CAS  PubMed  Google Scholar 

  • Fox DP, Santos JL (1985) N-bands and nucleolus expression in Schistocerca gregaria and Locusta migratoria. Heredity 54:333–341

    Article  Google Scholar 

  • Fox DP, Carter KC, Hewitt GM (1973) Giemsa banding and chiasma distribution in the desert locust. Heredity (Edinb) 31:272–276

    Article  CAS  Google Scholar 

  • Gaubatz JW, Cutler RG (1990) Mouse satellite DNA is transcribed in senescent cardiac muscle. J Biol Chem 265:17753–17758

    CAS  PubMed  Google Scholar 

  • Gordon A, Hannon GJ (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. Unpublished http://hannonlab.cshl.edu/fastx_toolkit

  • Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699–708

    Article  CAS  PubMed  Google Scholar 

  • Hagele K (1979) Characterization of heterochromatin in Schistocerca gregaria by C- and N-banding methods. Chromosoma 70:239–250

    Article  Google Scholar 

  • Hardie DC, Gregory TR, Hebert PD (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749

    Article  CAS  PubMed  Google Scholar 

  • Henderson SA (1962) Temperature and chiasma formation in Schistocerca gregaria. Chromosoma 13:437–463

    Article  Google Scholar 

  • Henderson SA (1963) Chiasma distribution at diplotene in a locust. Heredity 18:173

    Article  Google Scholar 

  • Henderson SA (1964) RNA synthesis during male meiosis and spermiogenesis. Chromosoma 15:345–366

    Article  CAS  Google Scholar 

  • Henderson SA (1988) Four effects of elevated temperature on chiasma formation in the locust Schistocerca gregaria. Heredity 60:387–401

    Article  Google Scholar 

  • Hori T, Suzuki Y, Solovei I, Saitoh Y, Hutchison N, Ikeda JE, Macgregor H, Mizuno S (1996) Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome. Chromosome Res 4:411–426

    Article  CAS  PubMed  Google Scholar 

  • Jain HK, Singh U (1967) Actinomycin D induced chromosome breakage and suppression of meiosis in the locust, Schistocerca gregaria. Chromosoma 21:463–471

    Article  CAS  PubMed  Google Scholar 

  • Jamrich M, Warrior R, Steele R, Gall JG (1983) Transcription of repetitive sequences on Xenopus lampbrush chromosomes. Proc Natl Acad Sci U S A 80:3364–3367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • John B, Henderson SA (1962) Asynapsis and polyploidy in Schistocerca paranensis. Chromosoma 13:111–147

    Article  CAS  PubMed  Google Scholar 

  • John B, Hewitt GM (1966) Karyotype stability and DNA variability in the Acrididae. Chromosoma 20:155–172

    Article  Google Scholar 

  • John B, Naylor B (1961) Anomalous chromosome behaviour in germ line of Schistocerca gregaria. Heredity 16:187–198

    Article  Google Scholar 

  • Jones GH (1977) A test for early termination of chiasmata in diplotene spermatocytes of Schistocerca gregaria. Chromosoma 63:287–294

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorite P, Renault S, Rouleux-Bonnin F, Bigot S, Periquet G, Palomeque T (2002) Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae). Genome 45:609–616

    Article  CAS  PubMed  Google Scholar 

  • Lorite P, Torres MI, Palomeque T (2013) Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). Bull Entomol Res 103:538–546

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1934) The relationship of a particular chromosomal element to the development of nucleoli in Zea mays. Z Zellforsch 21:294–328

    Article  Google Scholar 

  • Meyne J, Hirai H, Imai HT (1995) FISH analysis of the telomere sequences of bulldog ants (Myrmecia: Formicidae). Chromosoma 104:14–18

    CAS  PubMed  Google Scholar 

  • Munoz-Pajares AJ, Martinez-Rodriguez L, Teruel M, Cabrero J, Camacho JP, Perfectti F (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Novak P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378

    Article  PubMed Central  PubMed  Google Scholar 

  • Novak P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM (2007) The mode and tempo of genome size evolution in eukaryotes. Genome Res 17:594–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Palomeque T, Lorite P (2008) Satellite DNA in insects: a review. Heredity (Edinb) 100:564–573

    Article  CAS  Google Scholar 

  • Pezer Z, Ugarkovic D (2012) Satellite DNA-associated siRNAs as mediators of heat shock response in insects. RNA Biol 9:587–595

    Article  CAS  PubMed  Google Scholar 

  • Rasch EM, Rasch RW (1981) Cytophotometric determination of genome size for two species of cave crickets (Orthoptera, Rhaphidophoridae). J Histochem Cytochem 29:885

    Google Scholar 

  • Renault S, Rouleux-Bonnin F, Periquet G, Bigot Y (1999) Satellite DNA transcription in Diadromus pulchellus (Hymenoptera). Insect Biochem Mol Biol 29:103–111

    Article  CAS  PubMed  Google Scholar 

  • Rouleux-Bonnin F, Renault S, Bigot Y, Periquet G (1996) Transcription of four satellite DNA subfamilies in Diprion pini (Hymenoptera, Symphyta, Diprionidae). Eur J Biochem 238:752–759

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist progremmers. In: Bioinformatics methods and protocols. Humana Press, pp 365–386

  • Rufas JS, Gosalvez J (1982) Development of silver stained structures during spermatogenesis of Schistocerca gregaria (Forsk.) (Orthoptera:Acrididae). Caryologia 35:261–267

    Article  Google Scholar 

  • Ruiz-Ruano FJ, Ruiz-Estevez M, Rodriguez-Perez J, Lopez-Pino JL, Cabrero J, Camacho JP (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126

    Article  CAS  PubMed  Google Scholar 

  • Solovei IV, Joffe BI, Gaginskaya ER, Macgregor HC (1996) Transcription of lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement. Chromosome Res 4:588–603

    Article  CAS  PubMed  Google Scholar 

  • Timothy D, Littlewood J, Olson P (2000) Small subunit rDNA and the platyhelminthes: signal, noise, conflict and compromise. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the platyhelminthes. CRC Press, UK, pp 381–330, 380

    Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational chalenges and solutions. Nat Rev Genet 13:36–46

    CAS  Google Scholar 

  • Varadaraj K, Skinner DM (1994) Cytoplasmic localization of transcripts of a complex G + C-rich crab satellite DNA. Chromosoma 103:423–431

    Article  CAS  PubMed  Google Scholar 

  • Varley JM, Macgregor HC, Nardi I, Andrews C, Erba HP (1980) Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage in Triturus cristatus carnifex. Chromosoma 80:289–307

    Article  CAS  PubMed  Google Scholar 

  • Vaughan HE, Heslop-Harrison JS, Hewitt GM (1999) The localization of mitochondrial sequences to chromosomal DNA in orthopterans. Genome 42:874–880

    Article  CAS  Google Scholar 

  • Wang S, Lorenzen MD, Beeman RW, Brown SJ (2008) Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol 9:R61

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei J, Ma C, Wang Y, He J, Luo Y, Wang Z, Guo X, Guo W, Zhang Y, Yang M, Hao S, Chen B, Ma Z, Yu D, Xiong Z, Zhu Y, Fan D, Han L, Wang B, Chen Y, Wang J, Yang L, Zhao W, Feng Y, Chen G, Lian J, Li Q, Huang Z, Yao X, Lv N, Zhang G, Li Y, Zhu B, Kang L (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957

    PubMed Central  PubMed  Google Scholar 

  • Westerman M (1967) The effect of X-irradiation on male meiosis in Schistocerca gregaria (Forskal). Chromosoma 22:401–416

    Article  Google Scholar 

  • Westerman M (1968) The effect of x-irradiation on male meiosis in Schistocerca gregaria (Forskal). II. The induction of chromosome mutations. Chromosoma 24:17–36

    Article  CAS  PubMed  Google Scholar 

  • Westerman M, Barton NH, Hewitt GM (1987) Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity 58:221–228

    Article  Google Scholar 

  • White MJD (1934) The influence of temperature on chiasma frequency. J Genet 29:203–216

    Article  Google Scholar 

  • Wilmore PJ, Brown AK (1975) Molecular properties of orthopteran DNA. Chromosoma 51:337–345

    Article  CAS  PubMed  Google Scholar 

  • Wolf KW (1996) The structure of condensed chromosomes in mitosis and meiosis of insects. Int J Insect Morphol Embryol 25:37–62

    Article  Google Scholar 

  • Wolf KW, Sumner AT (1996) Scanning electron microscopy of heterochromatin in chromosome spreads of male germ cells in Schistocerca gregaria (Acrididae, Orthoptera) after trypsinization. Biotech Histochem 71:237–244

    Article  CAS  PubMed  Google Scholar 

  • Wolf KW, Turner BM (1996) The pattern of histone H4 acetylation on the X chromosome during spermatogenesis of the desert locust Schistocerca gregaria. Genome 39:854–865

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917 and BFU2010-16438) and Plan Andaluz de Investigacion (CVI-6649 and BIO-220), and was partially performed by FEDER funds. M. Bakkali was supported by a Ramón y Cajal fellowship from the Spanish Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bakkali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho, J.P.M., Ruiz-Ruano, F.J., Martín-Blázquez, R. et al. A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. Chromosoma 124, 263–275 (2015). https://doi.org/10.1007/s00412-014-0499-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0499-0

Keywords

Navigation