Skip to main content

Advertisement

Log in

Emerging Roles for hnRNPs in post-transcriptional regulation: what can we learn from flies?

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a highly conserved family of RNA-binding proteins able to associate with nascent RNAs in order to support their localization, maturation and translation. Research over this last decade has remarked the importance of gene regulatory processes at post-transcriptional level, highlighting the emerging roles of hnRNPs in several essential biological events. Indeed, hnRNPs are key factors in regulating gene expression, thus, having a number of roles in many biological pathways. Moreover, failure of the activities catalysed by hnRNPs affects various biological processes and may underlie several human diseases including cancer, diabetes and neurodegenerative syndromes. In this review, we summarize some of hnRNPs’ roles in the model organism Drosophila melanogaster, particularly focusing on their participation in all aspects of post-transcriptional regulation as well as their conserved role and involvement in the aetiology of human pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adolph SK, DeLotto R, Nielsen FC, Christiansen J (2009) Embryonic expression of Drosophila IMP in the developing CNS and PNS. Gene Expr Patterns 9(3):138–143. doi:10.1016/j.gep.2008.12.001

    PubMed  CAS  Google Scholar 

  • Allemand E, Batsche E, Muchardt C (2008) Splicing, transcription, and chromatin: a menage a trois. Curr Opin Genet Dev 18(2):145–151. doi:10.1016/j.gde.2008.01.006

    PubMed  CAS  Google Scholar 

  • Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611. doi:10.1016/j.bbrc.2006.10.093

    PubMed  CAS  Google Scholar 

  • Auweter SD, Oberstrass FC, Allain FH (2006) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34(17):4943–4959. doi:10.1093/nar/gkl620

    PubMed Central  PubMed  CAS  Google Scholar 

  • Badadani M, Nalbandian A, Watts GD, Vesa J, Kitazawa M, Su H, Tanaja J, Dec E, Wallace DC, Mukherjee J, Caiozzo V, Warman M, Kimonis VE (2010) VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS One 5 (10). doi:10.1371/journal.pone.0013183

  • Bannai H, Fukatsu K, Mizutani A, Natsume T, Iemura S, Ikegami T, Inoue T, Mikoshiba K (2004) An RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1) is a component of mRNA granule transported with inositol 1,4,5-trisphosphate receptor type 1 mRNA in neuronal dendrites. J Biol Chem 279(51):53427–53434. doi:10.1074/jbc.M409732200

    PubMed  CAS  Google Scholar 

  • Besse F, Lopez de Quinto S, Marchand V, Trucco A, Ephrussi A (2009) Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23(2):195–207. doi:10.1101/gad.505709

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171. doi:10.1146/annurev.genet.39.110304.095804

    PubMed  CAS  Google Scholar 

  • Blanchette M, Green RE, MacArthur S, Brooks AN, Brenner SE, Eisen MB, Rio DC (2009) Genome-wide analysis of alternative pre-mRNA splicing and RNA-binding specificities of the Drosophila hnRNP A/B family members. Mol Cell 33(4):438–449. doi:10.1016/j.molcel.2009.01.022

    PubMed Central  PubMed  CAS  Google Scholar 

  • Borah S, Wong AC, Steitz JA (2009) Drosophila hnRNP A1 homologs Hrp36/Hrp38 enhance U2-type versus U12-type splicing to regulate alternative splicing of the prospero twintron. Proc Natl Acad Sci U S A 106(8):2577–2582. doi:10.1073/pnas.0812826106

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boulanger MC, Miranda TB, Clarke S, Di Fruscio M, Suter B, Lasko P, Richard S (2004) Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochem J 379(Pt 2):283–289. doi:10.1042/BJ20031176

    PubMed Central  PubMed  CAS  Google Scholar 

  • Buchenau P, Saumweber H, Arndt-Jovin DJ (1997) The dynamic nuclear redistribution of an hnRNP K-homologous protein during Drosophila embryo development and heat shock. Flexibility of transcription sites in vivo. J Cell Biol 137(2):291–303

    PubMed Central  PubMed  CAS  Google Scholar 

  • Buratti E, Baralle FE (2009) The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66:1–34. doi:10.1016/S0065-2660(09)66001-6

    PubMed  CAS  Google Scholar 

  • Buratti E, Baralle FE (2010) The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 7(4):420–429

    PubMed  CAS  Google Scholar 

  • Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280(45):37572–37584. doi:10.1074/jbc.M505557200

    PubMed  CAS  Google Scholar 

  • Busch A, Hertel KJ (2012) Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA 3(1):1–12. doi:10.1002/wrna.100

    PubMed Central  PubMed  CAS  Google Scholar 

  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252(5009):1167–1171

    PubMed  CAS  Google Scholar 

  • Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI (2006) The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta 1765(2):85–100. doi:10.1016/j.bbcan.2005.10.002

    PubMed  CAS  Google Scholar 

  • Chang KY, Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform. Febs J 272(9):2109–2117. doi:10.1111/j.1742-4658.2005.04652.x

    PubMed  CAS  Google Scholar 

  • Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1's multifunctional regulatory roles. RNA 16(8):1449–1462. doi:10.1261/rna.2254110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6(4):211–220. doi:10.1038/nrneurol.2010.18

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davis MB, Sun W, Standiford DM (2002) Lineage-specific expression of polypyrimidine tract binding protein (PTB) in Drosophila embryos. Mech Dev 111(1–2):143–147

    PubMed  CAS  Google Scholar 

  • Dery KJ, Gaur S, Gencheva M, Yen Y, Shively JE, Gaur RK (2011) Mechanistic control of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1, and hnRNP M. J Biol Chem 286(18):16039–16051. doi:10.1074/jbc.M110.204057

    PubMed Central  PubMed  CAS  Google Scholar 

  • Draper I, Tabaka ME, Jackson FR, Salomon RN, Kopin AS (2009) The evolutionarily conserved RNA binding protein SMOOTH is essential for maintaining normal muscle function. Fly (Austin) 3(4):235–246

    CAS  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3(3):195–205. doi:10.1038/nrm760

    PubMed  CAS  Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321. doi:10.1146/annurev.bi.62.070193.001445

    PubMed  CAS  Google Scholar 

  • Forman MS, Trojanowski JQ, Lee VM (2007) TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol 17(5):548–555. doi:10.1016/j.conb.2007.08.005

    PubMed Central  PubMed  CAS  Google Scholar 

  • Forrest KM, Clark IE, Jain RA, Gavis ER (2004) Temporal complexity within a translational control element in the nanos mRNA. Development 131(23):5849–5857. doi:10.1242/dev.01460

    PubMed  CAS  Google Scholar 

  • Gagne JP, Hunter JM, Labrecque B, Chabot B, Poirier GG (2003) A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochem J 371(Pt 2):331–340. doi:10.1042/BJ20021675

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gao R, Yu Y, Inoue A, Widodo N, Kaul SC, Wadhwa R (2013) Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) promotes tumor metastasis by induction of genes involved in extracellular matrix, cell movement and angiogenesis. J Biol Chem. doi:10.1074/jbc.M113.466136

    Google Scholar 

  • Gilbert LI (2008) Drosophila is an inclusive model for human diseases, growth and development. Mol Cell Endocrinol 293(1–2):25–31. doi:10.1016/j.mce.2008.02.009

    PubMed  CAS  Google Scholar 

  • Godena VK, Romano G, Romano M, Appocher C, Klima R, Buratti E, Baralle FE, Feiguin F (2011) TDP-43 regulates Drosophila neuromuscular junctions growth by modulating Futsch/MAP1B levels and synaptic microtubules organization. PLoS One 6(3):e17808. doi:10.1371/journal.pone.0017808

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goodrich JS, Clouse KN, Schupbach T (2004) Hrb27C, Sqd and Otu cooperatively regulate gurken RNA localization and mediate nurse cell chromosome dispersion in Drosophila oogenesis. Development 131(9):1949–1958. doi:10.1242/dev.01078

    PubMed  CAS  Google Scholar 

  • Gunkel N, Yano T, Markussen FH, Olsen LC, Ephrussi A (1998) Localization-dependent translation requires a functional interaction between the 5′ and 3′ ends of oskar mRNA. Genes Dev 12(11):1652–1664

    PubMed Central  PubMed  CAS  Google Scholar 

  • Habelhah H, Shah K, Huang L, Ostareck-Lederer A, Burlingame AL, Shokat KM, Hentze MW, Ronai Z (2001) ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 3(3):325–330. doi:10.1038/35060131

    PubMed  CAS  Google Scholar 

  • Han SP, Tang YH, Smith R (2010) Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 430(3):379–392. doi:10.1042/BJ20100396

    PubMed  CAS  Google Scholar 

  • Hanson KA, Kim SH, Tibbetts RS (2012) RNA-binding proteins in neurodegenerative disease: TDP-43 and beyond. Wiley Interdiscip Rev RNA 3(2):265–285. doi:10.1002/wrna.111

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hartmann B, Castelo R, Minana B, Peden E, Blanchette M, Rio DC, Singh R, Valcarcel J (2011) Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA 17(3):453–468. doi:10.1261/rna.2460411

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haynes SR, Johnson D, Raychaudhuri G, Beyer AL (1991) The Drosophila Hrb87F gene encodes a new member of the A and B hnRNP protein group. Nucleic Acids Res 19(1):25–31

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hazelett DJ, Chang JC, Lakeland DL, Morton DB (2012) Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda) 2(7):789–802. doi:10.1534/g3.112.002998

    PubMed Central  CAS  Google Scholar 

  • He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66(7):1239–1256. doi:10.1007/s00018-008-8532-1

    PubMed  CAS  Google Scholar 

  • Hovemann BT, Reim I, Werner S, Katz S, Saumweber H (2000) The protein Hrb57A of Drosophila melanogaster closely related to hnRNP K from vertebrates is present at sites active in transcription and coprecipitates with four RNA-binding proteins. Gene 245(1):127–137

    PubMed  CAS  Google Scholar 

  • Huynh JR, Munro TP, Smith-Litiere K, Lepesant JA, St Johnston D (2004) The Drosophila hnRNPA/B homolog, Hrp48, is specifically required for a distinct step in osk mRNA localization. Dev Cell 6(5):625–635

    PubMed  CAS  Google Scholar 

  • Ji Y, Tulin AV (2009) Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing. Nucleic Acids Res 37(11):3501–3513. doi:10.1093/nar/gkp218

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ji Y, Tulin AV (2012) Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nat Commun 3:760. doi:10.1038/ncomms1759

    PubMed Central  PubMed  Google Scholar 

  • Ji Y, Tulin AV (2013) Post-transcriptional regulation by poly(ADP-ribosyl)ation of the RNA-binding proteins. Int J Mol Sci 14(8):16168–16183. doi:10.3390/ijms140816168

    PubMed Central  PubMed  Google Scholar 

  • Jin P, Zarnescu DC, Zhang F, Pearson CE, Lucchesi JC, Moses K, Warren ST (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron 39(5):739–747

    PubMed  CAS  Google Scholar 

  • Jolly C, Lakhotia SC (2006) Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 34(19):5508–5514. doi:10.1093/nar/gkl711

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kalifa Y, Armenti ST, Gavis ER (2009) Glorund interactions in the regulation of gurken and oskar mRNAs. Dev Biol 326(1):68–74. doi:10.1016/j.ydbio.2008.10.032

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kalifa Y, Huang T, Rosen LN, Chatterjee S, Gavis ER (2006) Glorund, a Drosophila hnRNP F/H homolog, is an ovarian repressor of nanos translation. Dev Cell 10(3):291–301. doi:10.1016/j.devcel.2006.01.001

    PubMed  CAS  Google Scholar 

  • Kelley RL (1993) Initial organization of the Drosophila dorsoventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev 7(6):948–960

    PubMed  CAS  Google Scholar 

  • Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467–473. doi:10.1038/nature11922

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81(3):403–412

    PubMed  CAS  Google Scholar 

  • Kozlova N, Braga J, Lundgren J, Rino J, Young P, Carmo-Fonseca M, Visa N (2006) Studies on the role of NonA in mRNA biogenesis. Exp Cell Res 312(13):2619–2630. doi:10.1016/j.yexcr.2006.04.013

    PubMed  CAS  Google Scholar 

  • Krecic AM, Swanson MS (1999) hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11(3):363–371. doi:10.1016/S0955-0674(99)80051-9

    PubMed  CAS  Google Scholar 

  • Lakhotia SC (2011) Forty years of the 93D puff of Drosophila melanogaster. J Biosci 36(3):399–423

    PubMed  CAS  Google Scholar 

  • Lakhotia SC, Mallik M, Singh AK, Ray M (2012) The large noncoding hsromega-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 121(1):49–70. doi:10.1007/s00412-011-0341-x

    PubMed  CAS  Google Scholar 

  • Lakhotia SC, Rajendra TK, Prasanth KV (2001) Developmental regulation and complex organization of the promoter of the non-coding hsr(omega) gene of Drosophila melanogaster. J Biosci 26(1):25–38

    PubMed  CAS  Google Scholar 

  • Lakhotia SC, Ray P, Rajendra TK, Prasanth K.V (1999) The non-coding transcripts of hsr-omega gene in Drosophila: do they regulate trafficking and availability of nuclear RNA-processing factors? . Curr Sci:553--563

  • Layalle S, Coessens E, Ghysen A, Dambly-Chaudiere C (2005) Smooth, a hnRNP encoding gene, controls axonal navigation in Drosophila. Genes Cells 10(2):119–125. doi:10.1111/j.1365-2443.2005.00822.x

    PubMed  CAS  Google Scholar 

  • Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13(1):38–50. doi:10.1038/nrn3121

    CAS  Google Scholar 

  • Li T, Evdokimov E, Shen RF, Chao CC, Tekle E, Wang T, Stadtman ER, Yang DC, Chock PB (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc Natl Acad Sci U S A 101(23):8551–8556. doi:10.1073/pnas.0402889101

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li Y, Ray P, Rao EJ, Shi C, Guo W, Chen X, Woodruff EA 3rd, Fushimi K, Wu JY (2010) A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A 107(7):3169–3174. doi:10.1073/pnas.0913602107

    PubMed Central  PubMed  CAS  Google Scholar 

  • Llamusi B, Bargiela A, Fernandez-Costa JM, Garcia-Lopez A, Klima R, Feiguin F, Artero R (2013) Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis Model Mech 6(1):184–196. doi:10.1242/dmm.009563

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lo CS, Chang SY, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2012) Heterogeneous nuclear ribonucleoprotein F suppresses angiotensinogen gene expression and attenuates hypertension and kidney injury in diabetic mice. Diabetes 61(10):2597–2608. doi:10.2337/db11-1349

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mackay TF (1985) Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111(2):351–374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mallik M, Lakhotia SC (2010) Improved activities of CREB binding protein, heterogeneous nuclear ribonucleoproteins and proteasome following downregulation of noncoding hsromega transcripts help suppress poly(Q) pathogenesis in fly models. Genetics 184(4):927–945. doi:10.1534/genetics.109.113696

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mallik M, Lakhotia SC (2011) Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsromega gene in Drosophila. J Biosci 36(2):265–280

    PubMed  CAS  Google Scholar 

  • Markovtsov V, Nikolic JM, Goldman JA, Turck CW, Chou MY, Black DL (2000) Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 20(20):7463–7479

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martin JH (2005) The corticospinal system: from development to motor control. Neuroscientist 11(2):161–173. doi:10.1177/1073858404270843

    PubMed  Google Scholar 

  • Matunis EL, Matunis MJ, Dreyfuss G (1992a) Characterization of the major hnRNP proteins from Drosophila melanogaster. J Cell Biol 116(2):257–269

    PubMed  CAS  Google Scholar 

  • Matunis MJ, Matunis EL, Dreyfuss G (1992b) Isolation of hnRNP complexes from Drosophila melanogaster. J Cell Biol 116(2):245–255

    PubMed  CAS  Google Scholar 

  • McDermott SM, Meignin C, Rappsilber J, Davis I (2012) Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification. Biol Open 1(5):488–497. doi:10.1242/bio.2012885

    PubMed Central  PubMed  CAS  Google Scholar 

  • Najbauer J, Johnson BA, Young AL, Aswad DW (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 268(14):10501–10509

    PubMed  CAS  Google Scholar 

  • Neuman-Silberberg FS, Schupbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75(1):165–174

    PubMed  CAS  Google Scholar 

  • Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM (2007) TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64(10):1388–1394. doi:10.1001/archneur.64.10.1388

    PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi:10.1126/science.1134108

    PubMed  CAS  Google Scholar 

  • Nichols RC, Wang XW, Tang J, Hamilton BJ, High FA, Herschman HR, Rigby WF (2000) The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res 256(2):522–532. doi:10.1006/excr.2000.4827

    PubMed  CAS  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463. doi:10.1038/nature08909

    PubMed Central  PubMed  CAS  Google Scholar 

  • Norris AD, Calarco JA (2012) Emerging roles of alternative pre-mRNA splicing regulation in neuronal development and function. Front Neurosci 6:122. doi:10.3389/fnins.2012.00122

    PubMed Central  PubMed  CAS  Google Scholar 

  • Norvell A, Debec A, Finch D, Gibson L, Thoma B (2005) Squid is required for efficient posterior localization of oskar mRNA during Drosophila oogenesis. Dev Genes Evol 215(7):340–349. doi:10.1007/s00427-005-0480-2

    PubMed  CAS  Google Scholar 

  • Olson S, Blanchette M, Park J, Savva Y, Yeo GW, Yeakley JM, Rio DC, Graveley BR (2007) A regulator of Dscam mutually exclusive splicing fidelity. Nat Struct Mol Biol 14(12):1134–1140

    PubMed Central  PubMed  CAS  Google Scholar 

  • Onorati MC, Lazzaro S, Mallik M, Ingrassia AM, Carreca AP, Singh AK, Chaturvedi DP, Lakhotia SC, Corona DF (2011) The ISWI chromatin remodeler organizes the hsromega ncRNA-containing omega speckle nuclear compartments. PLoS Genet 7(5):e1002096. doi:10.1371/journal.pgen.1002096

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69(6):3584–3596

    PubMed Central  PubMed  CAS  Google Scholar 

  • Paik D, Jang YG, Lee YE, Lee YN, Yamamoto R, Gee HY, Yoo S, Bae E, Min KJ, Tatar M, Park JJ (2012) Misexpression screen delineates novel genes controlling Drosophila lifespan. Mech Ageing Dev 133(5):234–245. doi:10.1016/j.mad.2012.02.001

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63(2):411–436. doi:10.1124/pr.110.003293

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patry C, Bouchard L, Labrecque P, Gendron D, Lemieux B, Toutant J, Lapointe E, Wellinger R, Chabot B (2003) Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 63(22):7679–7688

    PubMed  CAS  Google Scholar 

  • Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, Pimpinelli S (2009) Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 5(10):e1000670. doi:10.1371/journal.pgen.1000670

    PubMed Central  PubMed  Google Scholar 

  • Pinnola A, Naumova N, Shah M, Tulin AV (2007) Nucleosomal core histones mediate dynamic regulation of poly(ADP-ribose) polymerase 1 protein binding to chromatin and induction of its enzymatic activity. J Biol Chem 282(44):32511–32519. doi:10.1074/jbc.M705989200

    PubMed  CAS  Google Scholar 

  • Piper M, Holt C (2004) RNA translation in axons. Annu Rev Cell Dev Biol 20:505–523. doi:10.1146/annurev.cellbio.20.010403.111746

    PubMed Central  PubMed  CAS  Google Scholar 

  • Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC (2000) Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 113(Pt 19):3485–3497

    PubMed  CAS  Google Scholar 

  • Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154(4):727–736. doi:10.1016/j.cell.2013.07.038

    PubMed  CAS  Google Scholar 

  • Reim I, Mattow J, Saumweber H (1999) The RRM protein NonA from Drosophila forms a complex with the RRM proteins Hrb87F and S5 and the Zn finger protein PEP on hnRNA. Exp Cell Res 253(2):573–586. doi:10.1006/excr.1999.4647

    PubMed  CAS  Google Scholar 

  • Ritson GP, Custer SK, Freibaum BD, Guinto JB, Geffel D, Moore J, Tang W, Winton MJ, Neumann M, Trojanowski JQ, Lee VM, Forman MS, Taylor JP (2010) TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 30(22):7729–7739. doi:10.1523/JNEUROSCI.5894-09.2010

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sengupta S, Lakhotia SC (2006) Altered expressions of the noncoding hsromega gene enhances poly-Q-induced neurotoxicity in Drosophila. RNA Biol 3(1):28–35

    PubMed  CAS  Google Scholar 

  • Shulman JM, Shulman LM, Weiner WJ, Feany MB (2003) From fruit fly to bedside: translating lessons from Drosophila models of neurodegenerative disease. Curr Opin Neurol 16(4):443–449. doi:10.1097/01.wco.0000084220.82329.60

    PubMed  Google Scholar 

  • Singh AK, Lakhotia SC (2012) The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J Biosci 37(4):659–678

    PubMed  CAS  Google Scholar 

  • Singh OP (2001) Functional diversity of hnRNP proteins. Indian J Biochem Biophys 38(3):129–134

    PubMed  CAS  Google Scholar 

  • Sinsimer KS, Jain RA, Chatterjee S, Gavis ER (2011) A late phase of germ plasm accumulation during Drosophila oogenesis requires lost and rumpelstiltskin. Development 138(16):3431–3440. doi:10.1242/dev.065029

    PubMed Central  PubMed  CAS  Google Scholar 

  • Smibert CA, Lie YS, Shillinglaw W, Henzel WJ, Macdonald PM (1999) Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5(12):1535–1547

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sofola OA, Jin P, Qin Y, Duan R, Liu H, de Haro M, Nelson DL, Botas J (2007) RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55(4):565–571. doi:10.1016/j.neuron.2007.07.021

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stanewsky R, Fry TA, Reim I, Saumweber H, Hall JC (1996) Bioassaying putative RNA-binding motifs in a protein encoded by a gene that influences courtship and visually mediated behavior in Drosophila: in vitro mutagenesis of nonA. Genetics 143(1):259–275

    PubMed Central  PubMed  CAS  Google Scholar 

  • Strong MJ (2010) The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 288(1–2):1–12. doi:10.1016/j.jns.2009.09.029

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Perreault S, Topisirovic I, Sonenberg N (2013) Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q. PLoS Biol 11(5):e1001564. doi:10.1371/journal.pbio.1001564

    PubMed Central  PubMed  CAS  Google Scholar 

  • Swaminathan A, Gajan A, Pile LA (2012) Epigenetic regulation of transcription in Drosophila. Front Biosci 17:909–937

    CAS  Google Scholar 

  • Tan H, Qurashi A, Poidevin M, Nelson DL, Li H, Jin P (2012) Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. Hum Mol Genet 21(1):57–65. doi:10.1093/hmg/ddr437

    PubMed Central  PubMed  Google Scholar 

  • Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, Suzukake M, Hosokawa M, Yoshida M, Hatsuta H, Takao M, Saito Y, Murayama S, Akiyama H, Hasegawa M, Mann DM, Tamaoka A (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135(Pt 11):3380–3391. doi:10.1093/brain/aws230

    PubMed  Google Scholar 

  • Tyagi A, Ryme J, Brodin D, Ostlund Farrants AK, Visa N (2009) SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet 5(5):e1000470. doi:10.1371/journal.pgen.1000470

    PubMed Central  PubMed  Google Scholar 

  • Wang JW, Brent JR, Tomlinson A, Shneider NA, McCabe BD (2011) The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J Clin Invest 121(10):4118–4126. doi:10.1172/JCI57883

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yano T, Lopez de Quinto S, Matsui Y, Shevchenko A, Ephrussi A (2004) Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev Cell 6(5):637–648

    PubMed  CAS  Google Scholar 

  • Zinszner H, Immanuel D, Yin Y, Liang FX, Ron D (1997) A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited. Oncogene 14(4):451–461. doi:10.1038/sj.onc.1200854

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Giulia D’Angelo for the critical reading and feedbacks on this manuscript. We would also like to apologize to all our colleagues whose work was not properly cited due to space restriction. L.L.P. is supported by an AIRC fellowship. This work was supported by grants from Fondazione Telethon, AIRC and Progetto Bandiera Epigen to D.F.V.C and by MFAG grant from AIRC to M.C.O.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Onorati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccolo, L.L., Corona, D. & Onorati, M.C. Emerging Roles for hnRNPs in post-transcriptional regulation: what can we learn from flies?. Chromosoma 123, 515–527 (2014). https://doi.org/10.1007/s00412-014-0470-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0470-0

Keywords

Navigation