Skip to main content
Log in

Regulated specific proteolysis of the Cajal body marker protein coilin

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Cajal bodies (CB) are subnuclear domains that contain various proteins with diverse functions including the CB marker protein coilin. In this study, we investigate the proteolytic activity of calpain on coilin. Here, we report a 28-kDa cleaved coilin fragment detected by two coilin antibodies that is cell cycle regulated, with levels that are consistently reduced during mitosis. We further show that an in vitro calpain assay with full-length or C-terminal coilin recombinant protein releases the same size cleaved fragment. Furthermore, addition of exogenous RNA to purified coilin induces proteolysis by calpain. We also report that the relative levels of this cleaved coilin fragment are susceptible to changes induced by various cell stressors, and that coilin localization is affected by inhibition or knockdown of calpain both under normal and stressed conditions. Collectively, our data suggest that coilin is subjected to regulated specific proteolysis by calpain, and this processing may play a role in the regulation of coilin activity and CB formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida F, Saffrich R, Ansorge W, Carmo-Fonseca M (1998) Microinjection of anti-coilin antibodies affects the structure of coiled bodies. J Cell Biol 142(4):899–912

    Article  PubMed  CAS  Google Scholar 

  • Andrade LEC, Tan EM, Chan EKL (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci U S A 90:1947–1951

    Article  PubMed  CAS  Google Scholar 

  • Barcaroli D, Dinsdale D, Neale MH, Bongiorno-Borbone L, Ranalli M, Munarriz E, Sayan AE, McWilliam JM, Smith TM, Fava E, Knight RA, Melino G, De Laurenzi V (2006) FLASH is an essential component of Cajal bodies. Proc Natl Acad Sci U S A 103(40):14802–14807. doi:10.1073/pnas.0604225103

    Article  PubMed  CAS  Google Scholar 

  • Broome HJ, Hebert MD (2012) In vitro RNase and nucleic acid binding activities implicate coilin in U snRNA processing. PLoS One 7(4):e36300. doi:10.1371/journal.pone

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Fonseca M (2002) New clues to the function of the Cajal body. EMBO Rep 3(8):726–727

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI (1992) Transcription-dependent colocalization of the U1, U2, U4/U6 and U5 snRNPs in coiled bodies. J Cell Biol 117:1–14

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Fonseca M, Ferreira J, Lamond AI (1993) Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis—evidence that the coiled body is a kinetic nuclear structure. J Cell Biol 120(4):841–852

    Article  PubMed  CAS  Google Scholar 

  • Carrero ZI, Velma V, Douglas HE, Hebert MD (2011) Coilin phosphomutants disrupt Cajal body formation, reduce cell proliferation and produce a distinct coilin degradation product. PLoS One 6(10):e25743. doi:10.1371/journal.pone

    Article  PubMed  CAS  Google Scholar 

  • Cioce M, Boulon S, Matera AG, Lamond AI (2006) UV-induced fragmentation of Cajal bodies. J Cell Biol 175(3):401–413. doi:10.1083/jcb.200604099

    Article  PubMed  CAS  Google Scholar 

  • Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R, Di Fiore PP, Bonapace IM (2004) Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol 24(6):2526–2535

    Article  PubMed  CAS  Google Scholar 

  • Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T (2002) Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21(11):2746–2756

    Article  PubMed  CAS  Google Scholar 

  • Fuentes JL, Strayer MS, Matera AG (2010) Molecular determinants of survival motor neuron (SMN) protein cleavage by the calcium-activated protease, calpain. PLoS One 5(12):e15769. doi:10.1371/journal.pone.0015769

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300

    Article  PubMed  CAS  Google Scholar 

  • Gilder AS, Do PM, Carrero ZI, Cosman AM, Broome HJ, Velma V, Martinez LA, Hebert MD (2011) Coilin participates in the suppression of RNA polymerase I in response to cisplatin-induced DNA damage. Mol Biol Cell 22(7):1070–1079. doi:10.1091/mbc.E10-08-0731

    Article  PubMed  CAS  Google Scholar 

  • Grimmler M, Bauer L, Nousiainen M, Korner R, Meister G, Fischer U (2005) Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs. EMBO Rep 6(1):70–76

    Article  PubMed  CAS  Google Scholar 

  • Hearst SM, Gilder AS, Negi SS, Davis MD, George EM, Whittom AA, Toyota CG, Husedzinovic A, Gruss OJ, Hebert MD (2009) Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J Cell Sci 122(Pt 11):1872–1881. doi:10.1242/jcs.044040

    Article  PubMed  CAS  Google Scholar 

  • Hebert MD (2010) Phosphorylation and the Cajal body: modification in search of function. Arch Biochem Biophys 496(2):69–76. doi:10.1016/j.abb.2010.02.012

    Article  PubMed  CAS  Google Scholar 

  • Hebert MD, Matera AG (2000) Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell 11(12):4159–4171

    PubMed  CAS  Google Scholar 

  • Hebert MD, Szymczyk PW, Shpargel KB, Matera AG (2001) Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 15(20):2720–2729

    Article  PubMed  CAS  Google Scholar 

  • Jady BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T (2003) Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J 22(8):1878–1888

    Article  PubMed  CAS  Google Scholar 

  • Kaiser TE, Intine RV, Dundr M (2008) De novo formation of a subnuclear body. Science 322(5908):1713–1717. doi:10.1126/science.1165216

    Article  PubMed  CAS  Google Scholar 

  • Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonne R, Luhrmann R (2006) Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 17(7):3221–3231. doi:10.1091/mbc.E06-03-0247

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Parry JA, Chin A, Duensing S, Duensing A (2008) Soluble histone H2AX is induced by DNA replication stress and sensitizes cells to undergo apoptosis. Mol Cancer 7:61. doi:10.1186/1476-4598-7-61

    Article  PubMed  Google Scholar 

  • Liu JL, Wu Z, Nizami Z, Deryusheva S, Rajendra TK, Beumer KJ, Gao H, Matera AG, Carroll D, Gall JG (2009) Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell 20(6):1661–1670. doi:10.1091/mbc.E08-05-0525

    Article  PubMed  CAS  Google Scholar 

  • Lyon CE, Bohmann K, Sleeman J, Lamond AI (1997) Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res 230:84–93

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Soderberg O, Stromblad S, Wiman KG, Farnebo M (2010) WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol 8(11):e1000521. doi:10.1371/journal.pbio.1000521

    Article  PubMed  Google Scholar 

  • Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17(5):639–647. doi:10.1016/j.devcel.2009.10.017

    Article  PubMed  CAS  Google Scholar 

  • Morris GE (2008) The Cajal body. Biochim Biophys Acta 1783(11):2108–2115. doi:10.1016/j.bbamcr.2008.07.016

    Article  PubMed  CAS  Google Scholar 

  • Petri S, Grimmler M, Over S, Fischer U, Gruss OJ (2007) Dephosphorylation of survival motor neurons (SMN) by PPM1G/PP2Cgamma governs Cajal body localization and stability of the SMN complex. J Cell Biol 179(3):451–465

    Article  PubMed  CAS  Google Scholar 

  • Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62(1):24–45. doi:10.1002/prot.20750

    Article  PubMed  CAS  Google Scholar 

  • Remboutsika E, Lutz Y, Gansmuller A, Vonesch JL, Losson R, Chambon P (1999) The putative nuclear receptor mediator TIF1alpha is tightly associated with euchromatin. J Cell Sci 112(Pt 11):1671–1683

    PubMed  CAS  Google Scholar 

  • Saido TC, Sorimachi H, Suzuki K (1994) Calpain: new perspectives in molecular diversity and physiological–pathological involvement. FASEB J 8(11):814–822

    PubMed  CAS  Google Scholar 

  • Shanbhag R, Kurabi A, Kwan JJ, Donaldson LW (2010) Solution structure of the carboxy-terminal Tudor domain from human coilin. FEBS Lett 584(20):4351–4356. doi:10.1016/j.febslet.2010.09.034

    Article  PubMed  CAS  Google Scholar 

  • Sherwood SW, Kung AL, Roitelman J, Simoni RD, Schimke RT (1993) In vivo inhibition of cyclin B degradation and induction of cell-cycle arrest in mammalian cells by the neutral cysteine protease inhibitor N-acetylleucylleucylnorleucinal. Proc Natl Acad Sci U S A 90(8):3353–3357

    Article  PubMed  CAS  Google Scholar 

  • Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13(2):167–173. doi:10.1038/ncb2157

    Article  PubMed  CAS  Google Scholar 

  • Shpargel KB, Ospina JK, Tucker KE, Matera AG, Hebert MD (2003) Control of Cajal body number is mediated by the coilin C-terminus. J Cell Sci 116(Pt 2):303–312

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Saido TC, Suzuki K (1994) New era of calpain research. Discovery of tissue-specific calpains. FEBS Lett 343(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Spector DL, Lark G, Huang S (1992) Differences in snRNP localization between transformed and nontransformed cells. Mol Biol Cell 3:555–569

    PubMed  CAS  Google Scholar 

  • Strzelecka M, Oates A, Neugebauer KM (2010) Dynamic control of Cajal body number during zebrafish embyogenesis. Nucleus 1(1):96–108

    PubMed  Google Scholar 

  • Sun J, Xu H, Subramony SH, Hebert MD (2005) Interactions between coilin and PIASy partially link Cajal bodies to PML bodies. J Cell Sci 118(Pt 21):4995–5003

    Article  PubMed  CAS  Google Scholar 

  • Toyota CG, Davis MD, Cosman AM, Hebert MD (2010) Coilin phosphorylation mediates interaction with SMN and SmB’. Chromosoma 119(2):205–215. doi:10.1007/s00412-009-0249-x

    Article  PubMed  CAS  Google Scholar 

  • Tucker KE, Berciano MT, Jacobs EY, LePage DF, Shpargel KB, Rossire JJ, Chan EK, Lafarga M, Conlon RA, Matera AG (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154(2):293–307

    Article  PubMed  CAS  Google Scholar 

  • Tuma RS, Roth MB (1999) Induction of coiled body-like structures in Xenopus oocytes by U7 snRNA. Chromosoma 108(6):337–344

    Article  PubMed  CAS  Google Scholar 

  • Walker MP, Rajendra TK, Saieva L, Fuentes JL, Pellizzoni L, Matera AG (2008) SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain. Hum Mol Genet 17(21):3399–3410. doi:10.1093/hmg/ddn234

    Article  PubMed  CAS  Google Scholar 

  • Walker MP, Tian L, Matera AG (2009) Reduced viability, fertility and fecundity in mice lacking the Cajal body marker protein, coilin. PLoS One 4(7):e6171. doi:10.1371/journal.pone.0006171

    Article  PubMed  Google Scholar 

  • Whittom AA, Xu H, Hebert MD (2008) Coilin levels and modifications influence artificial reporter splicing. Cell Mol Life Sci 65(7–8):1256–1271

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Pillai RS, Azzouz TN, Shpargel KB, Kambach C, Hebert MD, Schumperli D, Matera AG (2005) The C-terminal domain of coilin interacts with Sm proteins and U snRNPs. Chromosoma 114(3):155–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM081448.

Conflict of interest

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Hebert.

Additional information

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Coilin siRNA treatment reduces full-length and cleaved coilin fragment levels. (A) U2OS cells were transfected with control or coilin siRNA. 24hr post-transfection, the cells were harvested and the lysates subjected to SDS-PAGE, Western transfer, then probed with anti-coilin and anti-β-tubulin antibodies. (B) Quantification of knockdown from (A) and Figure 1B (48 and 72 h time points). The full-length coilin and cleaved coilin signals were divided by the tubulin signal. The values for coilin siRNA were then normalized to the results for the control siRNA. (JPEG 22 kb)

High-resolution image (TIFF 172 kb)

Supplemental Figure 2

The cleaved coilin fragment does not arise from the extreme N- or C-terminus of full-length coilin. HeLa cells were transfected with GFP-coilin or coilin-GFP. 24hr post-transfection, the cells were harvested and the lysates were incubated with calpain as described in “Materials and methods.” The reactions were subjected to SDS-PAGE, Western transfer, and then probed with anti-GFP and anti-coilin antibodies. The letter ‘a’ indicates full-length GFP-coilin or Coilin-GFP, ‘b’ indicates endogenous full-length coilin and ‘c’ indicates cleaved coilin fragment. (JPEG 12 kb)

High-resolution image (TIFF 130 kb)

Supplemental Figure 3

Protein bands detected by anti-coilin H300 antibody from Figure 6C were quantified by densitometric analysis. Cleaved coilin fragment to full-length coilin ratios were calculated for U2OS (A) and WI38 (B) cells. We have observed similar results in three experiments. (C) ALLN treatment does not influence SMN levels. HeLa cells were treated with DMSO or ALLN for 16 hr. The harvested cell lysates subjected to SDS-PAGE, Western transfer, then probed with anti-SMN and anti-β-tubulin antibodies. (JPEG 13 kb)

High-resolution image (TIFF 94 kb)

Supplemental Figure 4

Calpain4 KD decreases nucleolar accumulation of coilin: quantification of Figures 7 and 8. U2OS (A) and HeLa (B) cells were counted for each treatment and the percentages of cells with nucleolar coilin were presented; more than fifty cells were counted for each treatment. (JPEG 10 kb)

High-resolution image (TIFF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velma, V., Broome, H.J. & Hebert, M.D. Regulated specific proteolysis of the Cajal body marker protein coilin. Chromosoma 121, 629–642 (2012). https://doi.org/10.1007/s00412-012-0387-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-012-0387-4

Keywords

Navigation