, Volume 121, Issue 2, pp 191–199 | Cite as

Condensin dysfunction in human cells induces nonrandom chromosomal breaks in anaphase, with distinct patterns for both unique and repeated genomic regions

  • Alexander Samoshkin
  • Stanimir Dulev
  • Dmitry Loukinov
  • Jeffrey A. Rosenfeld
  • Alexander V. Strunnikov
Research Article


Condensin complexes are essential for chromosome condensation and segregation in mitosis, while condensin dysfunction, among other pathways leading to chromosomal bridging in mitosis, may play a role in tumor genomic instability, including recently discovered chromotripsis. To characterize potential double-strand breaks specifically occurring in late anaphase, human chromosomes depleted of condensin were analyzed by γ-H2AX ChIP followed by high-throughput sequencing (ChIP-seq). In condensin-depleted cells, the nonrepeated parts of the genome were shown to contain distinct γ-H2AX enrichment zones 75% of which overlapped with known hemizygous deletions in cancers. Furthermore, some tandemly repeated DNA sequences, analyzed separately from the rest of the genome, showed significant γ-H2AX enrichment in condensin-depleted anaphases. The most commonly occurring targets of such enrichment included simple repeats, centromeric satellites, and rDNA. The two latter categories indicate that acrocentric human chromosomes are especially susceptible to breaks upon condensin deficiency. The genomic regions that are specifically destabilized upon condensin dysfunction may constitute a condensin-specific chromosome destabilization pattern.

Supplementary material

412_2011_353_MOESM1_ESM.tif (311 kb)
High-resolution image (TIFF 310 kb)
412_2011_353_MOESM2_ESM.csv (26 kb)
ESM 2γ-H2AX enrichment peaks for SMC2-depleted anaphase cells from ChIP-seq experiments in BED file format. Two illumina sequence datasets were generated for each experimental condition, and the results were combined for analysis. Peaks were generated by CisGenome software, with the following parameters: bin size 150 bp, minimum peak length 600 bp. (CSV 26 kb)
412_2011_353_MOESM3_ESM.pdf (7.5 mb)
(PDF 7.48 MB)


  1. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C, Widaa S, Hinton J, Fahey C, Fu B, Swamy S, Dalgliesh GL, Teh BT, Deloukas P, Yang F, Campbell PJ, Futreal PA, Stratton MR (2010) Signatures of mutation and selection in the cancer genome. Nature 463(7283):893–898. doi:10.1038/nature08768 PubMedCrossRefGoogle Scholar
  2. Caburet S, Conti C, Schurra C, Lebofsky R, Edelstein SJ, Bensimon A (2005) Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15(8):1079–1085. doi:10.1101/gr.3970105 PubMedCrossRefGoogle Scholar
  3. Chibon F, Lagarde P, Salas S, Perot G, Brouste V, Tirode F, Lucchesi C, de Reynies A, Kauffmann A, Bui B, Terrier P, Bonvalot S, Le Cesne A, Vince-Ranchere D, Blay JY, Collin F, Guillou L, Leroux A, Coindre JM, Aurias A (2010) Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 16(7):781–787. doi:10.1038/nm.2174 PubMedCrossRefGoogle Scholar
  4. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261. doi:10.1385/MB:26:3:249 PubMedCrossRefGoogle Scholar
  5. D’Ambrosio C, Kelly G, Shirahige K, Uhlmann F (2008) Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr Biol 18(14):1084–1089PubMedCrossRefGoogle Scholar
  6. Feng J, Liu T, Zhang Y (2011) Using MACS to identify peaks from ChIP-Seq data. Curr Protoc Bioinformatics Chapter 2:Unit 2 14. doi:10.1002/0471250953.bi0214s34
  7. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, Kok CY, Jia M, Ewing R, Menzies A, Teague JW, Stratton MR, Futreal PA (2010) COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38(Database issue):D652–D657. doi:10.1093/nar/gkp995 PubMedCrossRefGoogle Scholar
  8. Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149(4):811–824PubMedCrossRefGoogle Scholar
  9. Gelfand Y, Rodriguez A, Benson G (2007) TRDB–the tandem repeats database. Nucleic Acids Res 35(Database issue):D80–D87. doi:10.1093/nar/gkl1013 PubMedCrossRefGoogle Scholar
  10. Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 22(16):2204–2214. doi:10.1101/gad.1675908 PubMedCrossRefGoogle Scholar
  11. Ham MF, Takakuwa T, Rahadiani N, Tresnasari K, Nakajima H, Aozasa K (2007) Condensin mutations and abnormal chromosomal structures in pyothorax-associated lymphoma. Cancer Sci 98(7):1041–1047. doi:10.1111/j.1349-7006.2007.00500.x PubMedCrossRefGoogle Scholar
  12. Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7(5):311–322. doi:10.1038/nrm1909 PubMedCrossRefGoogle Scholar
  13. Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, Legube G (2010) High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29(8):1446–1457. doi:10.1038/emboj.2010.38 PubMedCrossRefGoogle Scholar
  14. Ji H, Jiang H, Ma W, Wong WH (2011) Using CisGenome to analyze ChIP-chip and ChIP-seq Data. Curr Protoc Bioinformatics Chapter 2:Unit2 13. doi:10.1002/0471250953.bi0213s33
  15. Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412. doi:10.1038/nrg2165-c1, author reply 414PubMedCrossRefGoogle Scholar
  16. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, Jonasdottir A, Sigurdsson A, Kristinsson KT, Frigge ML, Gylfason A, Olason PI, Gudjonsson SA, Sverrisson S, Stacey SN, Sigurgeirsson B, Benediktsdottir KR, Sigurdsson H, Jonsson T, Benediktsson R, Olafsson JH, Johannsson OT, Hreidarsson AB, Sigurdsson G, Ferguson-Smith AC, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K (2009) Parental origin of sequence variants associated with complex diseases. Nature 462(7275):868–874. doi:10.1038/nature08625 PubMedCrossRefGoogle Scholar
  17. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. doi:10.1186/gb-2009-10-3-r25 PubMedCrossRefGoogle Scholar
  18. Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312(5771):269–272. doi:10.1126/science.1123191 PubMedCrossRefGoogle Scholar
  19. Meier A, Fiegler H, Munoz P, Ellis P, Rigler D, Langford C, Blasco MA, Carter N, Jackson SP (2007) Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO J 26(11):2707–2718. doi:10.1038/sj.emboj.7601719 PubMedCrossRefGoogle Scholar
  20. Nakajima M, Kumada K, Hatakeyama K, Noda T, Peters JM, Hirota T (2007) The complete removal of cohesin from chromosome arms depends on separase. J Cell Sci 120(Pt 23):4188–4196. doi:10.1242/jcs.011528 PubMedCrossRefGoogle Scholar
  21. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196. doi:10.1038/nature08658 PubMedCrossRefGoogle Scholar
  22. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi:10.1093/bioinformatics/btq033 PubMedCrossRefGoogle Scholar
  23. Rosenfeld JA, Xuan Z, DeSalle R (2009) Investigating repetitively matching short sequencing reads: the enigmatic nature of H3K9me3. Epigenetics 4(7):476–486PubMedCrossRefGoogle Scholar
  24. Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L, Karpova T, McNally J, Dasso M, Cleveland DW, Strunnikov A (2009) Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLoS One 4(8):e6831. doi:10.1371/journal.pone.0006831 PubMedCrossRefGoogle Scholar
  25. Schueler MG, Sullivan BA (2006) Structural and functional dynamics of human centromeric chromatin. Annu Rev Genom Hum Genet 7:301–313. doi:10.1146/annurev.genom.7.080505.115613 CrossRefGoogle Scholar
  26. Soutoglou E, Misteli T (2008) Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320(5882):1507–1510. doi:10.1126/science.1159051 PubMedCrossRefGoogle Scholar
  27. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. doi:10.1016/j.cell.2010.11.055 PubMedCrossRefGoogle Scholar
  28. Strunnikov AV (2010) One-hit wonders of genomic instability. Cell Div 5(1):15. doi:10.1186/1747-1028-5-15 PubMedCrossRefGoogle Scholar
  29. Tomson BN, D’Amours D, Adamson BS, Aragon L, Amon A (2006) Ribosomal DNA transcription-dependent processes interfere with chromosome segregation. Mol Cell Biol 26(16):6239–6247PubMedCrossRefGoogle Scholar
  30. Wang BD, Butylin P, Strunnikov A (2006) Condensin function in mitotic nucleolar segregation is regulated by rDNA transcription. Cell Cycle 5(19):2260–2267PubMedCrossRefGoogle Scholar
  31. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801. doi:10.1038/nature06634 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Alexander Samoshkin
    • 1
  • Stanimir Dulev
    • 2
  • Dmitry Loukinov
    • 3
  • Jeffrey A. Rosenfeld
    • 4
  • Alexander V. Strunnikov
    • 3
  1. 1.NIH NCIGenome Structure and Function SectionBethesdaUSA
  2. 2.Ludwig-Maximilians-UniversitätAdolf Butenandt InstituteMunichGermany
  3. 3.NIH NIAIDLaboratory of ImmunopathologyRockvilleUSA
  4. 4.Division of High Performance and Research ComputingUniversity of Medicine & Dentistry of New JerseyNewarkUSA

Personalised recommendations