Chromosoma

, Volume 120, Issue 4, pp 335–351 | Cite as

Homolog pairing and sister chromatid cohesion in heterochromatin in Drosophila male meiosis I

Research Article

Abstract

Drosophila males undergo meiosis without recombination or chiasmata but homologous chromosomes pair and disjoin regularly. The X–Y pair utilizes a specific repeated sequence within the heterochromatic ribosomal DNA blocks as a pairing site. No pairing sites have yet been identified for the autosomes. To search for such sites, we utilized probes targeting specific heterochromatic regions to assay heterochromatin pairing sequences and behavior in meiosis by fluorescence in situ hybridization (FISH). We found that the small fourth chromosome pairs at heterochromatic region 61 and associates with the X chromosome throughout prophase I. Homolog pairing of the fourth chromosome is disrupted when the homolog conjunction complex is perturbed by mutations in SNM or MNM. On the other hand, six tested heterochromatic regions of the major autosomes proved to be largely unpaired after early prophase I, suggesting that stable homolog pairing sites do not exist in heterochromatin of the major autosomes. Furthermore, FISH analysis revealed two distinct patterns of sister chromatid cohesion in heterochromatin: regions with stable cohesion and regions lacking cohesion. This suggests that meiotic sister chromatid cohesion is incomplete within heterochromatin and may occur at specific preferential sites.

Abbreviations

CDI

Centromere identifier

FISH

Fluorescence in situ hybridization

MNM

Modifier of Mdg4 in meiosis

rDNA

Ribosomal DNA

Rsp

Responder

SC

Synaptonemal complex

SNM

Stromalin in meiosis

SOLO

Sisters on the LOose

Supplementary material

412_2011_314_MOESM1_ESM.doc (64 kb)
Supplementary Tables 1–2 (DOC 64.0 kb)
412_2011_314_Fig9_ESM.gif (141 kb)
Fig. S1

Thread-like signals of the 1.686 g/cm3 (h37&h48) probe at middle and late prophase I of spermatocytes. The h37&h48 probe signals are shown as green and DNA, stained by DAPI, is shown as red. White arrows indicate thread-like signals between homologs. Size bar represents 5 μm. (GIF 141 kb)

412_2011_314_MOESM2_ESM.eps (2.6 mb)
High resolution image (EPS 2.55 mb)
412_2011_314_Fig10_ESM.gif (147 kb)
Fig. S2

Signals of the AATAT (h61) and 359 bp (h31) probes at different stages of spermatocytes. The h61 probe signals are shown as red, the h31 probe signals are shown as green and DNA, stained by DAPI, is shown as blue. Size bar represents 5 μm. (GIF 146 kb)

412_2011_314_MOESM3_ESM.eps (2.2 mb)
High resolution image (EPS 2.21 mb)
412_2011_314_Fig11_ESM.gif (95 kb)
Fig. S3

Signals of AATAC (h6) probe at middle and late prophase I of spermatocytes. The h6 probe signals are shown as green and DNA, stained by DAPI, is shown as red. Size bar represents 5 μm. (GIF 94.8 kb)

412_2011_314_MOESM4_ESM.eps (2 mb)
High resolution image (EPS 1.97 mb)

References

  1. Abad JP, Carmena M, Baars S, Saunders RD, Glover DM, Ludena P, Sentis C, Tyler-Smith C, Villasante A (1992) Dodeca satellite: a conserved G + C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci USA 89:4663–4667PubMedCrossRefGoogle Scholar
  2. Andreyeva EN, Kolesnikova TD, Demakova OV, Mendez-Lago M, Pokholkova GV, Belyaeva ES, Rossi F, Dimitri P, Villasante A, Zhimulev IF (2007) High-resolution analysis of Drosophila heterochromatin organization using SuUR Su(var)3-9 double mutants. Proc Natl Acad Sci USA 104:12819–12824PubMedCrossRefGoogle Scholar
  3. Appels R, Hilliker AJ (1982) The cytogenetic boundaries of the rDNA region within heterochromatin in the X chromosome of Drosophila melanogaster and their relation to male meiotic pairing sites. Genet Res 39:149–156PubMedCrossRefGoogle Scholar
  4. Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98:249–259PubMedCrossRefGoogle Scholar
  5. Bonaccorsi S, Lohe A (1991) Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics 129:177–189PubMedGoogle Scholar
  6. Bonaccorsi S, Pisano C, Puoti F, Gatti M (1988) Y chromosome loops in Drosophila melanogaster. Genetics 120:1015–1034PubMedGoogle Scholar
  7. Brittnacher JG, Ganetzky B (1989) On the components of segregation distortion in Drosophila melanogaster. IV. Construction and analysis of free duplications for the Responder locus. Genetics 121:739–750PubMedGoogle Scholar
  8. Carmena M, Abad JP, Villasante A, Gonzalez C (1993) The Drosophila melanogaster dodecasatellite sequence is closely linked to the centromere and can form connections between sister chromatids during mitosis. J Cell Sci 105(Pt 1):41–50PubMedGoogle Scholar
  9. Carpenter AT (1994) Chiasma function. Cell 77:957–962PubMedCrossRefGoogle Scholar
  10. Cenci G, Bonaccorsi S, Pisano C, Verni F, Gatti M (1994) Chromatin and microtubule organization during premeiotic, meiotic and early postmeiotic stages of Drosophila melanogaster spermatogenesis. J Cell Sci 107(Pt 12):3521–3534PubMedGoogle Scholar
  11. Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000) Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254PubMedCrossRefGoogle Scholar
  12. Cortes A, Huertas D, Marsellach FX, Ferrer-Miralles N, Ortiz-Lombardia M, Fanti L, Pimpinelli S, Pina B, Azorin F (2003) Analysing the contribution of nucleic acids to the structure and properties of centric heterochromatin. Genetica 117:117–125PubMedCrossRefGoogle Scholar
  13. Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86:135–146PubMedCrossRefGoogle Scholar
  14. Fung JC, Marshall WF, Dernburg A, Agard DA, Sedat JW (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol 141:5–20PubMedCrossRefGoogle Scholar
  15. Gatti M, Pimpinelli S (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu Rev Genet 26:239–275PubMedCrossRefGoogle Scholar
  16. Gershenson S (1940) The nature of the so-called genetically-inert chromosome regions. Vidensk Akad Nauk URSR 3:3–116Google Scholar
  17. Gilliland WD, Hughes SF, Vietti DR, Hawley RS (2009) Congression of achiasmate chromosomes to the metaphase plate in Drosophila melanogaster oocytes. Dev Biol 325:122–128PubMedCrossRefGoogle Scholar
  18. Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259Google Scholar
  19. Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301PubMedCrossRefGoogle Scholar
  20. Hartl TA, Sweeney SJ, Knepler PJ, Bosco G (2008) Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genet 4:e1000228PubMedCrossRefGoogle Scholar
  21. Hawley RS, Irick H, Zitron AE, Haddox DA, Lohe A, New C, Whitley MD, Arbel T, Jang J, McKim K et al (1993) There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet 13:440–467CrossRefGoogle Scholar
  22. Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S, Mendez-Lago M, Rossi F, Villasante A, Dimitri P, Karpen GH, Celniker SE (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316:1625–1628PubMedCrossRefGoogle Scholar
  23. Hsieh T, Brutlag D (1979) Sequence and sequence variation within the 1.688 g/cm3 satellite DNA of Drosophila melanogaster. J Mol Biol 135:465–481PubMedCrossRefGoogle Scholar
  24. Hughes SE, Gilliland WD, Cotitta JL, Takeo S, Collins KA, Hawley RS (2009) Heterochromatic threads connect oscillating chromosomes during prometaphase I in Drosophila oocytes. PLoS Genet 5:e1000348PubMedCrossRefGoogle Scholar
  25. Koryakov DE, Domanitskaya EV, Belyakin SN, Zhimulev IF (2003) Abnormal tissue-dependent polytenization of a block of chromosome 3 pericentric heterochromatin in Drosophila melanogaster. J Cell Sci 116:1035–1044PubMedCrossRefGoogle Scholar
  26. Koundakjian EJ, Cowan DM, Hardy RW, Becker AH (2004) The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167:203–206PubMedCrossRefGoogle Scholar
  27. Locke J, McDermid HE (1993) Analysis of Drosophila chromosome 4 using pulsed field gel electrophoresis. Chromosoma 102:718–723PubMedCrossRefGoogle Scholar
  28. Lohe AR, Brutlag DL (1986) Multiplicity of satellite DNA sequences in Drosophila melanogaster. Proc Natl Acad Sci USA 83:696–700PubMedCrossRefGoogle Scholar
  29. Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134:1149–1174PubMedGoogle Scholar
  30. Makunin IV, Pokholkova GV, Zakharkin SO, Kholodilov NG, Zhimulev IF (1995) Isolation and characteristics of repeat DNA sequences from precentromere heterochromatin from the second chromosome of Drosophila melanogaster. Dokl Akad Nauk 344:266–269PubMedGoogle Scholar
  31. McKee BD (1996) The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma 105:135–141PubMedGoogle Scholar
  32. McKee BD (2004) Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim Biophys Acta 1677:165–180PubMedGoogle Scholar
  33. McKee BD (2009) Homolog pairing and segregation in Drosophila meiosis. Genome Dyn 5:56–68PubMedCrossRefGoogle Scholar
  34. McKee BD, Karpen GH (1990) Drosophila ribosomal RNA genes function as an X–Y pairing site during male meiosis. Cell 61:61–72PubMedCrossRefGoogle Scholar
  35. McKee BD, Lumsden SE, Das S (1993) The distribution of male meiotic pairing sites on chromosome 2 of Drosophila melanogaster: meiotic pairing and segregation of 2-Y transpositions. Chromosoma 102:180–194PubMedCrossRefGoogle Scholar
  36. Meyer GF (1960) The fine structure of spermatocyte nuclei of Drosophila melanogaster. In Proceedings of the European Regional Conference on Electron Microscopy, A.L. Houwinck and B.J. Spit, eds. (Delft: Die Nederlandse Verening voor Electronmicroscopic Delft):951–954Google Scholar
  37. Miyazaki WY, Orr-Weaver TL (1992) Sister-chromatid misbehavior in Drosophila ord mutants. Genetics 132:1047–1061PubMedGoogle Scholar
  38. Morgan TH (1914) No crossing over in the male of Drosophila of genes in the second and third pairs of chromosomes. Biol Bull 26:195–204CrossRefGoogle Scholar
  39. Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558PubMedCrossRefGoogle Scholar
  40. Petronczki M, Siomos MF, Nasmyth K (2003) Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440PubMedCrossRefGoogle Scholar
  41. Piergentili R, Mencarelli C (2008) Drosophila melanogaster kl-3 and kl-5 Y-loops harbor triple-stranded nucleic acids. J Cell Sci 121:1605–1612PubMedCrossRefGoogle Scholar
  42. Pimpinelli S, Dimitri P (1989) Cytogenetic analysis of segregation distortion in Drosophila melanogaster: the cytological organization of the Responder (Rsp) locus. Genetics 121:765–772PubMedGoogle Scholar
  43. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808PubMedCrossRefGoogle Scholar
  44. Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621PubMedCrossRefGoogle Scholar
  45. Sandler L, Novitski E (1956) Evidence for genetic homology between chromosomes I and IV in Drosophila melanogaster, with a proposed explanation for the crowding effect in triploids. Genetics 41:189–193PubMedGoogle Scholar
  46. Sturtevant AH (1934) Preferential segregation of the fourth chromosomes in Drosophila melanogaster. Proc Natl Acad Sci USA 20:515–518PubMedCrossRefGoogle Scholar
  47. Thomas SE, McKee BD (2009) Analysis of chromosome dynamics and chromosomal proteins in Drosophila spermatocytes. Methods Mol Biol 558:217–234PubMedCrossRefGoogle Scholar
  48. Thomas SE, Soltani-Bejnood M, Roth P, Dorn R, Logsdon JM Jr, McKee BD (2005) Identification of two proteins required for conjunction and regular segregation of achiasmate homologs in Drosophila male meiosis. Cell 123:555–568PubMedCrossRefGoogle Scholar
  49. Tomkiel JE, Wakimoto BT, Briscoe A Jr (2001) The teflon gene is required for maintenance of autosomal homolog pairing at meiosis I in male Drosophila melanogaster. Genetics 157:273–281PubMedGoogle Scholar
  50. Vazquez J, Belmont AS, Sedat JW (2002) The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol 12:1473–1483PubMedCrossRefGoogle Scholar
  51. Wakimoto BT, Lindsley DL, Herrera C (2004) Toward a comprehensive genetic analysis of male fertility in Drosophila melanogaster. Genetics 167:207–216PubMedCrossRefGoogle Scholar
  52. Yamamoto M (1979) Cytological studies of heterochromatin function in the Drosophila melanogaster male: autosomal meiotic paring. Chromosoma 72:293–328PubMedCrossRefGoogle Scholar
  53. Yan R, Thomas SE, Tsai JH, Yamada Y, McKee BD (2010) SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster. J Cell Biol 188:335–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Biochemistry, Cellular, and Molecular BiologyUniversity of TennesseeKnoxvilleUSA
  2. 2.Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleUSA

Personalised recommendations