Skip to main content
Log in

Different DNA-PKcs functions in the repair of radiation-induced and spontaneous DSBs within interstitial telomeric sequences

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Interstitial telomeric sequences (ITSs) in hamster cells are hot spots for spontaneous and induced chromosome aberrations (CAs). Most data on ITS instability to date have been obtained in DNA repair-proficient cells. The classical non-homologous end joining repair pathway (C-NHEJ), which is the principal double strand break (DSB) repair mechanism in mammalian cells, is thought to restore the morphologically correct chromosome structure. The production of CAs thus involves DNA-PKcs-independent repair pathways. In our current study, we investigated the participation of DNA-PKcs from the C-NHEJ pathway in the repair of spontaneous or radiation-induced DSBs in ITSs using wild-type and DNA-PKcs mutant Chinese hamster ovary cells. Our data demonstrate that DNA-PKcs stabilizes spontaneous DSBs within ITSs from the chromosome 9 long arm, leading to the formation of terminal deletions. In addition, we show that DNA-PKcs-dependent C-NHEJ is employed following radiation-induced DSBs in other ITSs and restores morphologically correct chromosomes, whereas DNA-PKcs independent mechanisms co-exist in DNA-PKcs proficient cells leading to an excess of CAs within ITSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez L, Evans JW, Wilks R, Lucas JN, Brown JM, Giaccia AJ (1993) Chromosomal radiosensitivity at intrachromosomal telomeric sites. Genes Chromosom Cancer 8(1):8–14

    Article  PubMed  CAS  Google Scholar 

  • Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279(53):55117–55126

    Article  PubMed  CAS  Google Scholar 

  • Ayme S, Mattei JF, Mattei MG, Aurran Y, Giraud F (1976) Nonrandom distribution of chromosome breaks in cultured lymphocytes of normal subjects. Hum Genet 31(2):161–175

    Article  PubMed  CAS  Google Scholar 

  • Bailey SM, Brenneman MA, Halbrook J, Nickoloff JA, Ullrich RL, Goodwin EH (2004) The kinase activity of DNA-PK is required to protect mammalian telomeres. DNA Repair (Amst) 3(3):225–233

    Article  CAS  Google Scholar 

  • Balajee AS, Oh HJ, Natarajan AT (1994) Analysis of restriction enzyme-induced chromosome aberrations in the interstitial telomeric repeat sequences of CHO and CHE cells by FISH. Mutat Res 307(1):307–313

    PubMed  CAS  Google Scholar 

  • Balajee AS, Dominguez I, Bohr VA, Natarajan AT (1996) Immunofluorescent analysis of the organization of telomeric DNA sequences and their involvement in chromosomal aberrations in hamster cells. Mutat Res 372(2):163–172

    PubMed  CAS  Google Scholar 

  • Barrios L, Miro R, Caballin MR, Fuster C, Guedea F, Subias A, Egozcue J (1989) Cytogenetic effects of radiotherapy. Breakpoint distribution in induced chromosome aberrations. Cancer Genet Cytogenet 41(1):61–70

    Article  PubMed  CAS  Google Scholar 

  • Beneke S, Cohausz O, Malanga M, Boukamp P, Althaus F, Bürkle A (2008) Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Res 36(19):6309–6317

    Article  PubMed  CAS  Google Scholar 

  • Bertoni L, Attolini C, Tessera L, Mucciolo E, Giulotto E (1994) Telomeric and nontelomeric (TTAGGG)n sequences in gene amplification and chromosome stability. Genomics 24(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Boei JJ, Vermeulen S, Natarajan AT (1997) Differential involvement of chromosomes 1 and 4 in the formation of chromosomal aberrations in human lymphocytes after X-irradiation. Int J Radiat Biol 72(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Bombarde O, Boby C, Gomez D, Frit P, Giraud-Panis MJ, Gilson E, Salles B, Calsou P (2010) TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J 29(9):1573–1584

    Article  PubMed  CAS  Google Scholar 

  • d'Adda di Fagagna F, Hande MP, Tong WM, Roth D, Lansdorp PM, Wang ZQ, Jackson SP (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11(15):1192–1196

    Article  PubMed  Google Scholar 

  • Day JP, Limoli CL, Morgan WF (1998) Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells. Carcinogenesis 19(2):259–265

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110

    Article  PubMed  Google Scholar 

  • Desmaze C, Aurias A (1995) In situ hybridization of fluorescent probes on chromosomes, nuclei or stretched DNA: applications in physical mapping and characterization of genomic rearrangements. Cell Mol Biol (Noisy-le-grand) 41(7):925–931

    CAS  Google Scholar 

  • Desmaze C, Pirzio LM, Blaise R, Mondello C, Giulotto E, Murnane JP, Sabatier L (2004) Interstitial telomeric repeats are not preferentially involved in radiation-induced chromosome aberrations in human cells. Cytogenet Genome Res 104(1–4):123–130

    Article  PubMed  CAS  Google Scholar 

  • DiBiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ Jr, Iliakis G (2000) DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60(5):1245–1253

    PubMed  CAS  Google Scholar 

  • Dubos C, Pequignot EV, Dutrillaux B (1978) Localization of gamma-rays induced chromatid breaks using a three consecutive staining technique. Mutat Res 49(1):127–131

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J (1981) La pratique de l'analyse chromosomique. Ed. Masson, Paris, pp 10–14

    Google Scholar 

  • Errami A, He DM, Friedl AA, Overkamp WJ, Morolli B, Hendrickson EA, Eckardt-Schupp F, Oshimura M, Lohman PH, Jackson SP, Zdzienicka MZ (1998) XR-C1, a new CHO cell mutant which is defective in DNA-PKcs, is impaired in both V(D)J coding and signal joint formation. Nucleic Acids Res 26(13):3146–3153

    Article  PubMed  CAS  Google Scholar 

  • Falk M, Lukasova E, Kozubek S (2008) Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta 1783(12):2398–2414

    Article  PubMed  CAS  Google Scholar 

  • Fernandez JL, Gosalvez J, Goyanes V (1995) High frequency of mutagen-induced chromatid exchanges at interstitial telomere-like DNA sequence blocks of Chinese hamster cells. Chromosome Res 3(5):281–284

    Article  PubMed  CAS  Google Scholar 

  • Gilley D, Tanaka H, Hande MP, Kurimasa A, Li GC, Oshimura M, Chen DJ (2001) DNA-PKcs is critical for telomere capping. Proc Natl Acad Sci USA 98(26):15084–15088

    Article  PubMed  CAS  Google Scholar 

  • Gomez M, Wu J, Schreiber V, Dunlap J, Dantzer F, Wang Y, Liu Y (2006) PARP1 is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Mol Biol Cell 17(4):1686–1696

    Article  PubMed  CAS  Google Scholar 

  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31(2):167–177

    Article  PubMed  CAS  Google Scholar 

  • Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA (2001) The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21(11):3642–3651

    Article  PubMed  CAS  Google Scholar 

  • Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104(1–4):14–20

    Article  PubMed  CAS  Google Scholar 

  • Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19(13):3398–3407

    Article  PubMed  CAS  Google Scholar 

  • Johnson KL, Brenner DJ, Nath J, Tucker JD, Geard CR (1999) Radiation-induced breakpoint misrejoining in human chromosomes: random or non-random? Int J Radiat Biol 75(2):131–141

    Article  PubMed  CAS  Google Scholar 

  • Kilburn AE, Shea MJ, Sargent RG, Wilson JH (2001) Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Mol Cell Biol 21(1):126–135

    Article  PubMed  CAS  Google Scholar 

  • Knehr S, Zitzelsberger H, Braselmann H, Nahrstedt U, Bauchinger M (1996) Chromosome analysis by fluorescence in situ hybridization: further indications for a non-DNA-proportional involvement of single chromosomes in radiation-induced structural aberrations. Int J Radiat Biol 70(4):385–392

    Article  PubMed  CAS  Google Scholar 

  • Kongruttanachok N, Phuangphairoj C, Thongnak A, Ponyeam W, Rattanatanyong P, Pornthanakasem W, Mutirangura A (2010) Replication independent DNA double-strand break retention may prevent genomic instability. Mol Cancer 9(1):70

    Article  PubMed  Google Scholar 

  • Krutilina RI, Oei S, Buchlow G, Yau PM, Zalensky AO, Zalenskaya IA, Bradbury EM, Tomilin NV (2001) A negative regulator of telomere-length protein trf1 is associated with interstitial (TTAGGG)n blocks in immortal Chinese hamster ovary cells. Biochem Biophys Res Commun 280(2):471–475

    Article  PubMed  CAS  Google Scholar 

  • Krutilina RI, Smirnova AN, Mudrak OS, Pleskach NM, Svetlova MP, Oei SL, Yau PM, Bradbury EM, Zalensky AO, Tomilin NV (2003) Protection of internal (TTAGGG)n repeats in Chinese hamster cells by telomeric protein TRF1. Oncogene 22(43):6690–6698

    Article  PubMed  CAS  Google Scholar 

  • Kuhfittig-Kulle S, Feldmann E, Odersky A, Kuliczkowska A, Goedecke W, Eggert A, Pfeiffer P (2007) The mutagenic potential of non-homologous end joining in the absence of the NHEJ core factors Ku70/80, DNA-PKcs and XRCC4-LigIV. Mutagenesis 22(3):217–233

    Article  PubMed  CAS  Google Scholar 

  • Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5(5):685–691

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Martin S, Trask B, Hamlin JL (1993) Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev 7(4):605–620

    Article  PubMed  CAS  Google Scholar 

  • Mari PO, Florea BI, Persengiev SP, Verkaik NS, Bruggenwirth HT, Modesti M, Giglia-Mari G, Bezstarosti K, Demmers JA, Luider TM, Houtsmuller AB, van Gent DC (2006) Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci USA 103(49):18597–18602

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Lopez W, Porro V, Folle GA, Mendez-Acuña L, Savage JRK, Obe G (2000) Interchromosomal distribution of gamma ray-induced chromatid aberrations in Chinese hamster ovary cell. Genetics and Mol Biol 23(4):1071–1076

    Article  Google Scholar 

  • Maser RS, Wong KK, Sahin E, Xia H, Naylor M, Hedberg HM, Artandi SE, DePinho RA (2007) DNA-dependent protein kinase catalytic subunit is not required for dysfunctional telomere fusion and checkpoint response in the telomerase-deficient mouse. Mol Cell Biol 27(6):2253–2265

    Article  PubMed  CAS  Google Scholar 

  • Mignon-Ravix C, Depetris D, Delobel B, Croquette MF, Mattei MG (2002) A human interstitial telomere associates in vivo with specific TRF2 and TIN2 proteins. Eur J Hum Genet 10(2):107–112

    Article  PubMed  CAS  Google Scholar 

  • Mitelman F, Mertens F, Johansson B (1997) A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet 15:417–474

    Article  PubMed  CAS  Google Scholar 

  • Mondello C, Pirzio L, Azzalin CM, Giulotto E (2000) Instability of interstitial telomeric sequences in the human genome. Genomics 68(2):111–117

    Article  PubMed  CAS  Google Scholar 

  • Mondello C, Guasconi V, Giulotto E, Nuzzo F (2002) Gamma-ray and hydrogen peroxide induction of gene amplification in hamster cells deficient in DNA double strand break repair. DNA Repair (Amst) 1(6):483–493

    Article  CAS  Google Scholar 

  • Natarajan AT, Balajee AS, Boei JJ, Chatterjee S, Darroudi F, Grigorova M, Noditi M, Oh HJ, Slijepcevic P, Vermeulen S (1994) Recent developments in the assessment of chromosomal damage. Int J Radiat Biol 66(5):615–623

    Article  PubMed  CAS  Google Scholar 

  • Pandita TK, DeRubeis D (1995) Spontaneous amplification of interstitial telomeric bands in Chinese hamster ovary cells. Cytogenet Cell Genet 68(1–2):95–101

    Article  PubMed  CAS  Google Scholar 

  • Pennarun G, Granotier C, Hoffschir F, Mandine E, Biard D, Gauthier LR, Boussin FD (2008) Role of ATM in the telomere response to the G-quadruplex ligand 360A. Nucleic Acids Res 36(5):1741–1754

    Article  PubMed  CAS  Google Scholar 

  • Pipiras E, Coquelle A, Bieth A, Debatisse M (1998) Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 17(1):325–333

    Article  PubMed  CAS  Google Scholar 

  • Puerto S, Marcos R, Ramirez MJ, Creus A, Boei JJ, Meijers M, Natarajan AT, Surralles J (2000) Induction, processing and persistence of radiation-induced chromosomal aberrations involving hamster euchromatin and heterochromatin. Mutat Res 469(2):169–179

    PubMed  CAS  Google Scholar 

  • Quénet D, Gasser V, Fouillen L, Cammas F, Sanglier-Cianferani S, Losson R, Dantzer F (2008) The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha. FASEB J 22(11):3853–3865

    Article  PubMed  Google Scholar 

  • Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB, Chang S (2010) The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 29(15):2598–2610

    Article  PubMed  CAS  Google Scholar 

  • Revaud D, Mozziconacci J, Sabatier L, Desmaze C, Lavelle C (2009) Sequence-driven telomeric chromatin structure. Cell Cycle 8(7):1099–1100

    Article  PubMed  CAS  Google Scholar 

  • Rivero MT, Mosquera A, Goyanes V, Slijepcevic P, Fernandez JL (2004) Differences in repair profiles of interstitial telomeric sites between normal and DNA double-strand break repair deficient Chinese hamster cells. Exp Cell Res 295(1):161–172

    Article  PubMed  CAS  Google Scholar 

  • Rothkamm K, Löbrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100(9):5057–5062

    Article  PubMed  CAS  Google Scholar 

  • Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23(16):5706–5715

    Article  PubMed  CAS  Google Scholar 

  • Slijepcevic P, Natarajan AT (1994) Distribution of radiation-induced G1 exchange and terminal deletion breakpoints in Chinese hamster chromosomes as detected by G banding. Int J Radiat Biol 66(6):747–755

    PubMed  CAS  Google Scholar 

  • Slijepcevic P, Xiao Y, Dominguez I, Natarajan AT (1996) Spontaneous and radiation-induced chromosomal breakage at interstitial telomeric sites. Chromosoma 104(8):596–604

    Article  PubMed  CAS  Google Scholar 

  • Slijepcevic P, Xiao Y, Natarajan AT, Bryant PE (1997) Instability of CHO chromosomes containing interstitial telomeric sequences originating from Chinese hamster chromosome 10. Cytogenet Cell Genet 76(1–2):58–60

    Article  PubMed  CAS  Google Scholar 

  • Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20(5):1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Storch K, Eke I, Borgmann K, Krause M, Richter C, Becker K, Schröck E, Cordes N (2010) Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res 70(10):3925–3934

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder BA (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosom Cancer 4(3):257–263

    Article  PubMed  CAS  Google Scholar 

  • Toledo F, Buttin G, Debatisse M (1993) The origin of chromosome rearrangements at early stages of AMPD2 gene amplification in Chinese hamster cells. Curr Biol 3(5):255–264

    Article  PubMed  CAS  Google Scholar 

  • Tomilin NV (2008) Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays 30(4):338–348

    Article  PubMed  CAS  Google Scholar 

  • Verkaik NS, Esveldt-van Lange RE, van Heemst D, Bruggenwirth HT, Hoeijmakers JH, Zdzienicka MZ, van Gent DC (2002) Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells. Eur J Immunol 32(3):701–709

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, van Driel R (2005) In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol Cell Biol 25(11):4552–4564

    Article  PubMed  CAS  Google Scholar 

  • Virsik-Kopp P, Rave-Frank M, Hofman-Huther H, Schmidberger H (2003) Role of DNA-PK in the process of aberration formation as studied in irradiated human glioblastoma cell lines M059K and M059J. Int J Radiat Biol 79(1):61–68

    PubMed  CAS  Google Scholar 

  • Williams ES, Klingler R, Ponnaiya B, Hardt T, Schrock E, Lees-Miller SP, Meek K, Ullrich RL, Bailey SM (2009) Telomere dysfunction and DNA-PKcs deficiency: characterization and consequence. Cancer Res 69(5):2100–2107

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhou J, Cao X, Zhang Q, Lim CU, Ullrich RL, Bailey SM, Liber HL (2007) Partial deficiency of DNA-PKcs increases ionizing radiation-induced mutagenesis and telomere instability in human cells. Cancer Lett 250(1):63–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Community RISC-RAD contract—FI6R-CT-2003-508842. Deborah Revaud is supported by doctoral fellowships from the Commissariat à l'Energie Atomique and The Ligue. The authors thank Audrey Debronde for technical assistance and Janice Britton-Davidian for helpful discussions. PCR products of hamster chromosomes were a generous gift from Willem Rens (Cambridge University). CHO9 wild-type cells, mutant XR-C1B cells deficient for DNA-PKcs and the complemented XR-C1#8-1 hamster cell line were generously provided by M. Zdzienicka (Department of Radiation Genetics and Chemicals Mutagenesis, Leiden University-Medical Center, The Netherlands).

Ethical standards

The authors declare that the experiments comply with current laws in France.

Conflict of interest statement

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Desmaze.

Additional information

Communicated by J. Karlseder

Laure Sabatier, Chantal Desmaze share leadership.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revaud, D., Martins, L.M., Boussin, F.D. et al. Different DNA-PKcs functions in the repair of radiation-induced and spontaneous DSBs within interstitial telomeric sequences. Chromosoma 120, 309–319 (2011). https://doi.org/10.1007/s00412-011-0313-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-011-0313-1

Keywords

Navigation