Skip to main content
Log in

The amount of heterochromatic proteins in the egg is correlated with sex determination in Planococcus citri (Homoptera, Coccoidea)

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In the mealybug Planococcus citri, there are no identifiable sex chromosomes. Early in the development of embryos destined to become males, the genome contributed by the sperm undergoes heterochromatization and, following an inverted type of meiosis, will be eliminated. Only two vital sperms are therefore produced, both carrying the same maternally derived genome. A differential distribution observed on the two spermatids during male germline cyst formation of chromatin remodeling factors such as HP1 and methylated K9 histone H3 prompted us to propose an imprinting/sex determination model in which the imprinted sperm is the one to undergo heterochromatization at syngamy. The sex ratio is normally 1:1, but aged females are known to produce almost exclusively male progeny, suggesting that the imprinting pattern of the male gamete in P. citri, though necessary, is apparently not sufficient for sex determination. We report here that egg cells of aged females show larger amounts of HP1 and Su(Var)3–9 than egg cells of young females. These data suggest that a determinant of sex may be the amount of maternally derived heterochromatic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18:1923–1938

    Article  PubMed  CAS  Google Scholar 

  • Achwal CW, Iyer CA, Chandra HS (1983) Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Lett 158:353–358

    Article  PubMed  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Moska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by HP1 chromo-domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Beaudet AL (2004) Complex imprinting. Nat Genet 36:793–795

    Article  PubMed  CAS  Google Scholar 

  • Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 151:1471–1478

    PubMed  CAS  Google Scholar 

  • Bongiorni S, Mazzuoli M, Masci S, Prantera G (2001) Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein. Development 128:3809–3817

    PubMed  CAS  Google Scholar 

  • Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G (2004) Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112:331–341

    Article  PubMed  Google Scholar 

  • Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD (1989) Genetically haploid spermatids are phenotypically diploid. Nature 337:373–376

    Article  PubMed  CAS  Google Scholar 

  • Brown SW (1959) Lecanoid chromosome behavior in three more families of the Coccoidea (Homoptera). Chromosoma 10:287–300

    Article  Google Scholar 

  • Brown SW (1969) Developmental control of heterochromatization in coccids. Genetics Suppl 61:191–198

    Google Scholar 

  • Brown SW, Nelson-Rees A (1961) Radiation analysis of a lecanoid genetic system. Genetics 46:983–1007

    PubMed  CAS  Google Scholar 

  • Brown SW, Nur U (1964) Heterochromatic chromosomes in the coccids. Science 145:130–136

    Article  PubMed  CAS  Google Scholar 

  • Brown SW, Chandra S (1977) Imprinting and differential regulation of homologous chromosomes. In: Goldstein L, Prescott DM (eds) Cell biology: a comprehensive treatise vol. 1. Genetic mechanisms of cells. Academic, London, pp 110–181

    Google Scholar 

  • Buglia GL, Predazzi V, Ferraro M (1999) Cytosine methylation is not involved in the heterochromatization of the paternal genome of mealybug Planococcus citri. Chromosom Res 7:71–73

    Article  CAS  Google Scholar 

  • Buglia GL, Ferraro M (2004) Germline cyst development and imprinting in male mealybug Planococcus citri. Chromosoma 113:284–294

    Article  PubMed  Google Scholar 

  • Büning J (1994) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman & Hall, London

    Google Scholar 

  • Chandra HS (1962) Inverse meiosis in triploid females of the mealybug, Planococcus citri. Genetics 47:1441–1454

    PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N et al (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  PubMed  CAS  Google Scholar 

  • Crouse HV (1960) The controlling element in sex chromosome behavior in Sciara. Genetics 45:1429–1443

    PubMed  CAS  Google Scholar 

  • de Cuevas M, Lilly MA, Spradling AC (1997) Germline cyst formation in Drosophila. Ann Rev Gene 31:405–428

    Article  Google Scholar 

  • Dallal GE, Wilkinsons L (1986) An analytic approximation to the distribution of Lilliefors’s test statistic for normality. American Statistician 40:294–296

    Article  Google Scholar 

  • Deobagkar DN, Muralidharan K, Devare SG, Kalghatgi KK, Chandra HS (1982) The mealybug chromosome system I: unusual methylated bases and dinucleotides in DNA of a Planococcus species. J Biosci 4:513–526

    Article  CAS  Google Scholar 

  • Eissenberg JC, Hartnett T (1993) A heat shock-activated cDNA rescues the recessive lethality of mutations in heterochromatin-associated protein HP1 of Drosophila melanogaster. Mol Gen Genet 240:333–338

    PubMed  CAS  Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204–210

    Article  PubMed  CAS  Google Scholar 

  • Epstein H, James TC, Singh PB (1992) Cloning and expression of Drosophila HP1 homologs from a mealybug, Planococcus citri. J Cell Sci 101:463–474

    PubMed  CAS  Google Scholar 

  • Ferraro M, Epifani C, Bongiorni S, Nardone AM, Parodi-Delfino S, Pantera G (1998) Cytogenetic characterization of the genome of mealybug Planococcus citri (Homoptera, Coccoidea). Caryologia 51:37–49

    Google Scholar 

  • Ferraro M, Buglia GL, Romano F (2001) Involvement of histone H4 acetylation in the epigenetic inheritance of different activity states of maternally and paternally derived genomes in the mealybug Planococcus citri. Chromosoma 110:93–101

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    Article  PubMed  CAS  Google Scholar 

  • Giansanti MG, Bonaccorsi S, Kurek R, Farkas RM, Dimitri P, Fuller MT, Gatti M (2006) The class I PITP Giotto is required for Drosophila cytokinesis. Curr Biol 16:195–201

    Article  PubMed  CAS  Google Scholar 

  • Grewal SIS, Elgin SCR (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12:178–187

    Article  PubMed  CAS  Google Scholar 

  • Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  PubMed  CAS  Google Scholar 

  • Grieder NC, de Cuevas M, Spradling AC (2000) The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127:4253–4264

    PubMed  CAS  Google Scholar 

  • Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus KC, Bonaccorsi S, Williams E, Vernì F, Gatti M, Goldberg M (1995) Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homolog, result in defects in centrosome migration and cytokinesis. J Cell Biol 131:1243–1259

    Article  PubMed  CAS  Google Scholar 

  • Haig D (1993) The evolution of unusual chromosomal systems in coccoids: extraordinary sex ratios revisited. J evol Biol 6:69–77

    Article  Google Scholar 

  • Hughes-Schrader S (1948) Cytology of coccids (Coccoidea—Homoptera). Adv Genet 2:127–203

    Article  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080–2083

    Article  PubMed  CAS  Google Scholar 

  • James TC (1937) Sex ratios and the status of the male in Pseudococcinae (Hem. Coccidae). Bul Ent Res 28:429–461

    Article  Google Scholar 

  • James TC (1938) The effect of the humidity of the environment on sex ratios from over-aged ova of Pseudococcus citri (Risso) (Hemipt. Coccidae). Proc R Entomol Soc Lond Ser A Gen Entomol 13:73–79

    Google Scholar 

  • James TC, Elgin SCR (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    PubMed  CAS  Google Scholar 

  • Jamieson BGM (1987) The ultrastructure and phylogeny of insect spermatozoa. Cambridge University Press, Cambridge

    Google Scholar 

  • Jenuwein T (2006) The epigenetic magic of histone lysine methylation. FEBS J 273:3121–3135

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Khosla S, Mendiratta G, Brahmachari V (2006) Genomic imprinting in the mealybugs. Cytogenet Genome Res 113:41–52

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Carrol D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–102

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kirschmann DA, Wallrath LL (2002) Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci U S A 99:16462–16469

    Article  PubMed  CAS  Google Scholar 

  • Loewus MW, Brown SW (1964) Base ratios in DNA in male and female Pseudococcus citri. Nature: 104

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  PubMed  CAS  Google Scholar 

  • Metz CW (1938) Chromosome behavior, inheritance and sex determination in Sciara. Am Nat 72:485–520

    Article  Google Scholar 

  • Mohan KN, Chandra HS (2005) Isolation and analysis of sequences showing sex-specific cytosine methylation in the mealybug Planococcus lilacinus. Mol Genet Genomics 274:557–568

    Article  PubMed  CAS  Google Scholar 

  • Nelson-Rees WA (1960) A study for sex predetermination in the mealybug Planococcus citri (Risso). J Exp Zool 144:111–137

    Article  PubMed  CAS  Google Scholar 

  • Nightingale KP, O’Neill LP, Turner BM (2006) Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16:125–136

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107

    Article  PubMed  CAS  Google Scholar 

  • Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, Fischer-Colbrie R, Wilkinson LS, Kelsey G (2005) Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol 25:3019–3026

    Article  PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ, Elgin SCR (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108:489–500

    Article  PubMed  CAS  Google Scholar 

  • Scarbrough K, Hattman S, Nur U (1984) Relationship of DNA methylation level to the presence of heterochromatin in mealybugs. Mol Cell Biol 4:599–603

    PubMed  CAS  Google Scholar 

  • Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann JE, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila Su(Var)3–9 in histone H3–K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Schrader F, Hughes-Schrader S (1931) Haploidy in Metazoa. Quart Rev Biol 6:411–438

    Article  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Surani MA (1991) Genomic imprinting: developmental significance and molecular mechanism. Curr Opin Genet Dev 1:241–246

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Article  PubMed  CAS  Google Scholar 

  • Telfer W (1975) Development and physiology of the oocyte–nurse cell syncytium. In: Treherne JE, Berridge MJ, Wigglesworth VB (eds) Advances in insects physiology vol. 11. Academic, London, pp 223–319

    Chapter  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22:836–845

    Article  PubMed  CAS  Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domain in Drosophila polytene nuclei. Cell 69:375–384

    Article  PubMed  CAS  Google Scholar 

  • Welch BL (1947) The generalization of “student’s” problem when several different population variances are involved. Biometrika 34:28–35

    Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. C. James for providing us with the anti-HP1 antibody (C4D12), G. Reuter for the anti-Su(Var)3–9, and M. G. Giansanti for the anti-Giotto antibodies and for critical reading of the manuscript. This research was supported by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Ferraro.

Additional information

Communicated by S. Gerbi

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 24.6 kb)

High resolution image file (TIFF 986 kb)

Fig. S2

GIF (20.0 kb)

High resolution image file (TIF 882 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buglia, G.L., Dionisi, D. & Ferraro, M. The amount of heterochromatic proteins in the egg is correlated with sex determination in Planococcus citri (Homoptera, Coccoidea). Chromosoma 118, 737–746 (2009). https://doi.org/10.1007/s00412-009-0231-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0231-7

Keywords

Navigation