Chromosoma

, 118:349 | Cite as

Cloning and sequencing of the breakpoint regions of inversion 5g fixed in Drosophila buzzatii

  • Olivia Prazeres da Costa
  • Josefa González
  • Alfredo Ruiz
Research Article

Abstract

Chromosomal inversions are ubiquitous in Drosophila both as intraspecific polymorphisms and interspecific differences. Many gaps still remain in our understanding of the mechanisms that generate them. Previous work has shown that in Drosophila buzzatii, three polymorphic inversions were generated by ectopic recombination between copies of the transposon Galileo. In this study, we have characterized the breakpoint regions of inversion 5g, fixed in D. buzzatii and absent in Drosophila koepferae and other closely related species. A novel approach comprising four experimental steps was used. First, D. buzzatii BAC clones encompassing the breakpoints were identified and their ends sequenced. Then, breakpoint regions were mapped at high resolution in the Drosophila mojavensis genome sequence. Finally, breakpoint regions were isolated by polymerase chain reaction in D. buzzatii and D. koepferae and sequenced. Our aim was to shed light on the mechanism that generated inversion 5g and specifically to test for an implication of the transposon Galileo. No evidence implicates Galileo or other transposable elements in the origin of inversion 5g that was generated most likely by two independent breaks and non-homologous end-joining repair. Our results show that different inversion-generating mechanisms may coexist within the same lineage and suggest a hypothesis for the evolutionary time and mode of their operation.

Supplementary material

412_2008_201_Fig1_ESM.gif (178 kb)
Figure S1

(GIF 178 KB)

412_2008_201_Fig1_ESM.tif (1 mb)
High resolution image file (TIF 1 MB)

References

  1. Andolfatto P, Kreitman M (2000) Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics 154:1681–1691PubMedGoogle Scholar
  2. Bergman CM, Pfeiffer BD, Rincon-Limas DE et al (2002) Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 3:Research0086–6PubMedCrossRefGoogle Scholar
  3. Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM (2008) Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179:1657–1680PubMedCrossRefGoogle Scholar
  4. Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A (1999) Generation of a widespread Drosophila inversion by a transposable element. Science 285:415–418PubMedCrossRefGoogle Scholar
  5. Cáceres M, Puig M, Ruiz A (2001) Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 11:1353–1364PubMedCrossRefGoogle Scholar
  6. Casacuberta E, Pardue ML (2003) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci U S A 100:3363–3368PubMedCrossRefGoogle Scholar
  7. Casals F, Navarro A (2007) Chromosomal evolution: inversions: the chicken or the egg? Heredity 99:479–480PubMedCrossRefGoogle Scholar
  8. Casals F, Cáceres M, Ruiz A (2003) The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Mol Biol Evol 20:674–685PubMedCrossRefGoogle Scholar
  9. Casals F, Cáceres M, Manfrin MH, González J, Ruiz A (2005) Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 169:2047–2059PubMedCrossRefGoogle Scholar
  10. Casals F, González J, Ruiz A (2006) Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6. Chromosoma 115:403–412PubMedCrossRefGoogle Scholar
  11. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar
  12. Cirera S, Martin-Campos JM, Segarra C, Aguade M (1995) Molecular characterization of the breakpoints of an inversion fixed between Drosophila melanogaster and Drosophila subobscura. Genetics 139:321–326PubMedGoogle Scholar
  13. Cirulli ET, Noor MA (2007) Localization and characterization of X chromosome inversion breakpoints separating Drosophila mojavensis and Drosophila arizonae. J Heredity 98:111–114CrossRefGoogle Scholar
  14. Coghlan A, Wolfe KH (2002) Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res 16:857–867CrossRefGoogle Scholar
  15. Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 21:673–682PubMedCrossRefGoogle Scholar
  16. Coulibaly MB, Lobo NF, Fitzpatrick MC et al (2007) Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae. PLoS ONE 2:e849PubMedCrossRefGoogle Scholar
  17. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218CrossRefGoogle Scholar
  18. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192PubMedCrossRefGoogle Scholar
  19. Eichler EE, Sankoff D (2003) Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797PubMedCrossRefGoogle Scholar
  20. Engels WR, Preston CR (1984) Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107:657–678PubMedGoogle Scholar
  21. Gómez GA, Hasson E (2003) Transpecific polymorphisms in an inversion linked esterase locus in Drosophila buzzatii. Mol Biol Evol 20:410–423PubMedCrossRefGoogle Scholar
  22. González J, Ranz JM, Ruiz A (2002) Chromosomal elements evolve at different rates in the Drosophila genome. Genetics 161:1137–1154PubMedGoogle Scholar
  23. González J, Nefedov M, Bosdet I et al (2005) A BAC-based physical map of the Drosophila buzzatii genome. Genome Res 15:885–892PubMedCrossRefGoogle Scholar
  24. Hoffmann AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst 39:21–42CrossRefGoogle Scholar
  25. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  26. Hurles ME, Dermitzakis ET, Tyler-Smith C (2008) The functional impact of structural variation in humans. Trends Genet 24:238–245PubMedCrossRefGoogle Scholar
  27. Kapitonov VV, Jurka J (2007a) Helitrons in fruit flies. Repbase Reports 7:129Google Scholar
  28. Kapitonov VV, Jurka J (2007b) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23:521–529PubMedCrossRefGoogle Scholar
  29. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254PubMedCrossRefGoogle Scholar
  30. Krimbas CB, Powell JR (1992) Drosophila inversion polymorphism. CRC, Boca RatonGoogle Scholar
  31. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642PubMedCrossRefGoogle Scholar
  32. Lim JK, Simmons MJ (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. Bioessays 16:269–275PubMedCrossRefGoogle Scholar
  33. Lukusa T, Fryns JP (2008) Human chromosome fragility. Biochim Biophys Acta 1779:3–16PubMedGoogle Scholar
  34. Marzo M, Puig M, Ruiz A (2008) The foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci U S A 105:2957–2962PubMedCrossRefGoogle Scholar
  35. Mathiopoulos KD, della Torre A, Predazzi V, Petrarca V, Coluzzi M (1998) Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. Proc Natl Acad Sci U S A 95:12444–12449PubMedCrossRefGoogle Scholar
  36. Matzkin LM, Merritt TJ, Zhu CT, Eanes WF (2005) The structure and population genetics of the breakpoints associated with the cosmopolitan chromosomal inversion In(3R)Payne in Drosophila melanogaster. Genetics 170:1143–1152PubMedCrossRefGoogle Scholar
  37. Montgomery E, Charlesworth B, Langley CH (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res 49:31–41PubMedCrossRefGoogle Scholar
  38. Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265PubMedCrossRefGoogle Scholar
  39. Noor MA, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A 98:12084–12088PubMedCrossRefGoogle Scholar
  40. Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL (2005) Two retrotransposons maintain telomeres in Drosophila. Chromosome Res 13:443–453PubMedCrossRefGoogle Scholar
  41. Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50PubMedGoogle Scholar
  42. Petes TD, Hill CW (1988) Recombination between repeated genes in microorganisms. Annu Rev Genet 22:147–168PubMedCrossRefGoogle Scholar
  43. Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91PubMedCrossRefGoogle Scholar
  44. Petrov DA, Hartl DL (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol 15:293–302PubMedGoogle Scholar
  45. Petrov DA, Lozovskaya ER, Hartl DL (1996) High intrinsic rate of DNA loss in Drosophila. Nature 384:346–349PubMedCrossRefGoogle Scholar
  46. Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062PubMedCrossRefGoogle Scholar
  47. Powell JR (1997) Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press, OxfordGoogle Scholar
  48. Puig M, Caceres M, Ruiz A (1994) Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA. Proc Natl Acad Sci U S A 101(24):9013–9018CrossRefGoogle Scholar
  49. Ranz JM, Segarra C, Ruiz A (1997) Chromosomal homology and molecular organization of Muller’s elements D and E in the Drosophila repleta species group. Genetics 145:281–295PubMedGoogle Scholar
  50. Ranz JM, Casals F, Ruiz A (2001) How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Res 11:230–239PubMedCrossRefGoogle Scholar
  51. Ranz JM, Maurin D, Chan YS et al (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5:e152PubMedCrossRefGoogle Scholar
  52. Richards S, Liu Y, Bettencourt BR et al (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15:1–18PubMedCrossRefGoogle Scholar
  53. Ruiz A, Wasserman M (1993) Evolutionary cytogenetics of the Drosophila buzzatii species complex. Heredity 70:582–596PubMedCrossRefGoogle Scholar
  54. Runcie DE, Noor MA (2009) Sequence signatures of a recent chromosomal rearrangement in Drosophila mojavensis. Genetica. Jul 26 (in press)Google Scholar
  55. Russo CA, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Mol Biol Evol 12:391–404PubMedGoogle Scholar
  56. Schaeffer SW, Bhutkar A, McAllister BF et al (2008) Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179:1601–1655PubMedCrossRefGoogle Scholar
  57. Schwartz M, Zlotorynski E, Kerem B (2006) The molecular basis of common and rare fragile sites. Cancer Lett 232:13–26PubMedCrossRefGoogle Scholar
  58. Sharakhov IV, White BJ, Sharakhova MV et al (2006) Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. Proc Natl Acad Sci U S A 103:6258–6262PubMedCrossRefGoogle Scholar
  59. Singh ND, Petrov DA (2004) Rapid sequence turnover at an intergenic locus in Drosophila. Mol Biol Evol 21:670–680PubMedCrossRefGoogle Scholar
  60. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5:1021–1029PubMedCrossRefGoogle Scholar
  61. Sperlich D, Pfriem P (1986) Chromosomal polymorphism in natural and experimental populations. In: Ashburner M, Carson HL, Thompson JN Jr. (eds) The genetics and biology of Drosophila. 3rd rd edn. Academic, NY, pp 257–309Google Scholar
  62. Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, LondonGoogle Scholar
  63. Stone WA (1962) The dominance of natural selection and the reality of superspecies (species groups) in the evolution of Drosophila. Univ Texas Publ 6205:507–537Google Scholar
  64. Sturtevant AH (1917) Genetic factors affecting the strength of linkage in Drosophila. Proc Natl Acad Sci U S A 3:555–558PubMedCrossRefGoogle Scholar
  65. Szankasi P, Gysler C, Zehntner U, Leupold U, Kohli J, Munz P (1986) Mitotic recombination between dispersed but related tRNA genes of Schizosaccharomyces pombe generates a reciprocal translocation. Mol Gen Genet 202:394–402CrossRefGoogle Scholar
  66. Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21:36–44PubMedCrossRefGoogle Scholar
  67. Tatusova TA, Madden TL (1999) BLAST 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250PubMedCrossRefGoogle Scholar
  68. Villasante A, Abad JP, Planelló R, Méndez-Lago M, Celniker SE, de Pablos B (2007) Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res 17:1909–1918PubMedCrossRefGoogle Scholar
  69. Wasserman M (1962) Cytological studies of the repleta group of the genus Drosophila: V. The mulleri subgroup. Univ Tex Publ 6205:85–117Google Scholar
  70. Wasserman M (1992) Cytological evolution of the Drosophila repleta species group. A: Drosophila inversion polymorphism (edited by Krimbas CB and Powell JR). CRC, Boca Raton, FL, pp 455–452Google Scholar
  71. Wesley CS, Eanes WF (1994) Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. Proc Natl Acad Sci U S A 91:3132–3136PubMedCrossRefGoogle Scholar
  72. Wharton LT (1942) Analysis of the repleta group of Drosophila. Univ Texas Pub 4228:23–59Google Scholar
  73. White MJD (1973) Animal cytology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  74. Wicker T, Sabot F, Hua-Van A (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  75. Yang HP, Barbash DA (2008) Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol 9:R39PubMedCrossRefGoogle Scholar
  76. Zhang H, Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27:367–379PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Olivia Prazeres da Costa
    • 1
  • Josefa González
    • 1
    • 2
  • Alfredo Ruiz
    • 1
  1. 1.Departament de Genètica i de Microbiologia, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of BiologyStanford UniversityStanfordUSA

Personalised recommendations