Skip to main content
Log in

Changes in chromatin structure correlate with transcriptional activity of nucleolar rDNA in polytene chromosomes

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Ribosomal DNA genes (rDNA) are found in tandem arrays of hundreds of repeated genes, but only a fraction of these genes are actively transcribed. The regulatory mechanism controlling the transition between active and inactive rDNA in higher eukaryotes is vital for cell survival. Here, we show that the nucleolus from Drosophila salivary gland cells contains two levels of chromatin organization reflecting differences in transcriptional activity: Decondensed chromatin is highly occupied with TATA-box-binding protein (TBP), phosphorylated H3S10, and acetylated H3K14, suggesting that rDNA in decondensed nucleolar areas is actively transcribed. Condensed chromatin lacks TBP, phosphorylated H3S10, or acetylated H3K14 and is enriched in the rDNA retrotransposons R1 and R2. The data show that R1 and R2 retrotransposons are not actively transcribed in salivary glands and may lead to the epigenetic silencing of flanking rDNA genes and that the silencing mechanisms of these sequences might be partially independent of heterochromatin formation by methylation of histone H3 at lysine 9 and binding of heterochromatin protein 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ananiev EV, Barsky VE, Ilyin YV, Churikov NA (1981) Localization of nucleoli in Drosophila melanogaster polytene chromosomes. Chromosoma 81:619–628

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  • Bao X, Deng H, Johansen J, Girton J, Johansen KM (2007) Loss-of-function alleles of the JIL-1 histone H3S10 kinase enhance position-effect variegation at pericentric sites in Drosophila heterochromatin. Genetics 176:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Boehm AK, Saunders A, Werner J, Lis JT (2003) Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23:7628–7637

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev 8:574–585

    Article  CAS  Google Scholar 

  • Buck SW, Sandmeier JJ, Smith JS (2002) RNA polymerase I propagates unidirectional spreading of rDNA silent chromatin. Cell 111:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Burke WD, Malik HS, Lathe WC 3rd, Eickbush TH (1998) Are retrotransposons long-term hitchhikers? Nature 392:141–142

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science (New York, NY 298:1039–1043

    CAS  Google Scholar 

  • Chung WJ, Okamura K, Martin R, Lai EC (2008) Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18:795–802

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Struhl K (1992) The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69:685–696

    Article  PubMed  CAS  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185–196

    Article  PubMed  CAS  Google Scholar 

  • Di Franco C, Pisano C, Fourcade-Peronnet F, Echalier G, Junakovic N (1992) Evidence for de novo rearrangements of Drosophila transposable elements induced by the passage to the cell culture. Genetica 87:65–73

    Article  PubMed  Google Scholar 

  • Earley K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, Neves N, Gross M, Viegas W, Pikaard CS (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14:377–392

    Article  PubMed  CAS  Google Scholar 

  • Eickbush DG, Ye J, Zhang X, Burke WD, Eickbush TH (2008) Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol 28:6452–6461

    Article  PubMed  CAS  Google Scholar 

  • Fanti L, Berloco M, Piacentini L, Pimpinelli S (2003) Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117:135–147

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  PubMed  CAS  Google Scholar 

  • Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum Mol Genet 16(Spec No 1):R21–R27

    Article  PubMed  CAS  Google Scholar 

  • Grummt I, Pikaard CS (2003) Epigenetic silencing of RNA polymerase I transcription. Nat Rev 4:641–649

    Article  CAS  Google Scholar 

  • Haindl M, Harasim T, Eick D, Muller S (2008) The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 9:273–279

    Article  PubMed  CAS  Google Scholar 

  • Ivaldi MS, Karam CS, Corces VG (2007) Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev 21:2818–2831

    Article  PubMed  CAS  Google Scholar 

  • Jakubczak JL, Burke WD, Eickbush TH (1991) Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci USA 88:3295–3299

    Article  PubMed  CAS  Google Scholar 

  • Jakubczak JL, Zenni MK, Woodruff RC, Eickbush TH (1992) Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics 131:129–142

    PubMed  CAS  Google Scholar 

  • James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50:170–180

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science (New York, NY 293:1074–1080

    CAS  Google Scholar 

  • Karpen GH, Schaefer JE, Laird CD (1988) A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev 2:1745–1763

    Article  PubMed  CAS  Google Scholar 

  • Kidd SJ, Glover DM (1981) Drosophila melanogaster ribosomal DNA containing type II insertions is variably transcribed in different strains and tissues. J Mol Biol 151:645–662

    Article  PubMed  CAS  Google Scholar 

  • Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18:1592–1605

    Article  PubMed  CAS  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16:2893–2905

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–154

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Corces VG (2003) Phosphorylation of histone H3 during transcriptional activation depends on promoter structure. Genes Dev 17:43–48

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RJ, Earley K, Pontes O, Silva M, Chen ZJ, Neves N, Viegas W, Pikaard CS (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13:599–609

    Article  PubMed  CAS  Google Scholar 

  • Li J, Santoro R, Koberna K, Grummt I (2005) The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J 24:120–127

    Article  PubMed  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917–926

    Article  PubMed  CAS  Google Scholar 

  • Lo WS, Duggan L, Emre NC, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL (2001) Snf1–a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science (New York, NY 293:1142–1146

    CAS  Google Scholar 

  • Long EO, Dawid IB (1979) Expression of ribosomal DNA insertions in Drosophila melanogaster. Cell 18:1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65:775–783

    Article  PubMed  CAS  Google Scholar 

  • Maisonhaute C, Ogereau D, Hua-Van A, Capy P (2007) Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome. Gene 393:116–126

    Article  PubMed  CAS  Google Scholar 

  • Mathog D, Sedat JW (1989) The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound XY or ring X chromosomes. Genetics 121:293–311

    PubMed  CAS  Google Scholar 

  • Mayer C, Schmitz KM, Li J, Grummt I, Santoro R (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22:351–361

    Article  PubMed  CAS  Google Scholar 

  • McKeown PC, Shaw PJ (2008) Chromatin: linking structure and function in the nucleolus. Chromosoma (in press)

  • McStay B (2006) Nucleolar dominance: a model for rRNA gene silencing. Genes Dev 20:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Moss T, Stefanovsky VY (2002) At the center of eukaryotic life. Cell 109:545–548

    Article  PubMed  CAS  Google Scholar 

  • Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, Fukamizu A, Kimura K, Shimizu T, Yanagisawa J (2008) Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133:627–639

    Article  PubMed  CAS  Google Scholar 

  • Nowak SJ, Corces VG (2000) Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev 14:3003–3013

    Article  PubMed  CAS  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  PubMed  CAS  Google Scholar 

  • Nowak SJ, Pai CY, Corces VG (2003) Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol Cell Biol 23:6129–6138

    Article  PubMed  CAS  Google Scholar 

  • Pai CY, Lei EP, Ghosh D, Corces VG (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 16:737–748

    Article  PubMed  CAS  Google Scholar 

  • Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:25–35

    Article  PubMed  CAS  Google Scholar 

  • Peng JC, Karpen GH (2008) Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18:204–211

    Article  PubMed  CAS  Google Scholar 

  • Perez-Gonzalez CE, Eickbush TH (2002) Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster. Genetics 162:799–811

    PubMed  CAS  Google Scholar 

  • Perez-Gonzalez CE, Burke WD, Eickbush TH (2003) R1 and R2 retrotransposition and deletion in the rDNA loci on the X and Y chromosomes of Drosophila melanogaster. Genetics 165:675–685

    PubMed  CAS  Google Scholar 

  • Pikaard CS (2000) The epigenetics of nucleolar dominance. Trends Genet 16:495–500

    Article  PubMed  CAS  Google Scholar 

  • Pile LA, Wassarman DA (2000) Chromosomal localization links the SIN3-RPD3 complex to the regulation of chromatin condensation, histone acetylation and gene expression. EMBO J 19:6131–6140

    Article  PubMed  CAS  Google Scholar 

  • Potter SS, Brorein WJ Jr., Dunsmuir P, Rubin GM (1979) Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17:415–427

    Article  PubMed  CAS  Google Scholar 

  • Preuss S, Pikaard CS (2007) rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta 1769:383–392

    PubMed  CAS  Google Scholar 

  • Raska I, Koberna K, Malinsky J, Fidlerova H, Masata M (2004) The nucleolus and transcription of ribosomal genes. Biol Cell/under the auspices of the European Cell Biology Organization 96:579–594

    CAS  Google Scholar 

  • Ritossa FM, Atwood KC, Spiegelman S (1966) A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of “ribosomal” DNA. Genetics 54:819–834

    PubMed  CAS  Google Scholar 

  • Russell J, Zomerdijk JC (2006) The RNA polymerase I transcription machinery. Biochem Soc Symp 73:203–216

    PubMed  CAS  Google Scholar 

  • Santoro R (2005) The silence of the ribosomal RNA genes. Cell Mol Life Sci 62:2067–2079

    Article  PubMed  CAS  Google Scholar 

  • Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396

    Article  PubMed  CAS  Google Scholar 

  • Sass H, Bautz EK (1982) Interbands of polytene chromosomes: binding sites and start points for RNA polymerase B (II). Chromosoma 86:77–93

    Article  PubMed  CAS  Google Scholar 

  • Spear BB, Gall JG (1973) Independent control of ribosomal gene replication in polytene chromosomes of Drosophila melanogaster. Proc Natl Acad Sci USA 70:1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Thomson S, Clayton AL, Mahadevan LC (2001) Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol Cell 8:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457

    Article  PubMed  CAS  Google Scholar 

  • Urata Y, Parmelee SJ, Agard DA, Sedat JW (1995) A three-dimensional structural dissection of Drosophila polytene chromosomes. J Cell Biol 131:279–295

    Article  PubMed  CAS  Google Scholar 

  • Viinikka Y, Hannah-Alava A, Arajarvi P (1971) A reinvestigation of the nucleolus-organizing regions in the salivary gland nuclei of Drosophila melanogaster. Chromosoma 36:34–45

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105:433–443

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Eickbush TH (2006) Chromatin structure and transcription of the R1- and R2-inserted rRNA genes of Drosophila melanogaster. Mol Cell Biol 26:8781–8790

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Hart CM, Laemmli UK (1995) Visualization of chromosomal domains with boundary element-associated factor BEAF-32. Cell 81:879–889

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Santoro R, Grummt I (2002) The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 21:4632–4640

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank James T. Kadonaga, Thomas Jenuwein, Anne Dejean and Jacob-S. Seeler for kindly providing antibodies used in this work. We also thank Heather Wallace for critically reading the manuscript. This work was supported by US Public Health Service Award GM78132-2 from the NIH and 0616081 from NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Labrador.

Additional information

Communicated by I. Grummt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plata, M.P., Kang, H.J., Zhang, S. et al. Changes in chromatin structure correlate with transcriptional activity of nucleolar rDNA in polytene chromosomes. Chromosoma 118, 303–322 (2009). https://doi.org/10.1007/s00412-008-0198-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0198-9

Keywords

Navigation