Skip to main content
Log in

Quality control of mRNP in the nucleus

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Formation of functional mRNA–protein particles requires a plethora of nuclear cotranscriptional and posttranscriptional RNA processing and packaging steps. Faithful execution of these events is closely monitored by surveillance systems that prevent nuclear export of, and/or rapidly degrade, faulty transcripts. Parts of this quality control also serve to eliminate a large number of noncoding RNAs produced by RNA polymerase II. Here, we discuss which aberrant features trigger messenger ribonucleoprotein quality control, how the process is executed, and how it is connected to the transcription machinery and the nuclear pore complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abruzzi KC, Lacadie S, Rosbash M (2004) Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. Embo J 23:2620–2631

    Article  PubMed  CAS  Google Scholar 

  • Abruzzi KC, Belostotsky DA, Chekanova JA, Dower K, Rosbash M (2006) 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. Embo J 25:4253–4262

    Article  PubMed  CAS  Google Scholar 

  • Adamson TE, Shutt DC, Price DH (2005) Functional coupling of cleavage and polyadenylation with transcription of mRNA. J Biol Chem 280:32262–32271

    Article  PubMed  CAS  Google Scholar 

  • Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999a) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. Embo J 18:5399–5410

    Article  PubMed  CAS  Google Scholar 

  • Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P (1999b) The yeast exosome and human PM-Scl are related complexes of 3′ –> 5′ exonucleases. Genes Dev 13:2148–2158

    Article  PubMed  CAS  Google Scholar 

  • Andrulis ED, Werner J, Nazarian A, Erdjument-Bromage H, Tempst P, Lis JT (2002) The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420:837–841

    Article  PubMed  CAS  Google Scholar 

  • Arigo JT, Carroll KL, Ames JM, Corden JL (2006a) Regulation of yeast NRD1 expression by premature transcription termination. Mol Cell 21:641–651

    Article  PubMed  CAS  Google Scholar 

  • Arigo JT, Eyler DE, Carroll KL, Corden JL (2006b) Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23:841–851

    Article  PubMed  CAS  Google Scholar 

  • Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17:251–256

    Article  PubMed  CAS  Google Scholar 

  • Bird G, Fong N, Gatlin JC, Farabaugh S, Bentley DL (2005) Ribozyme cleavage reveals connections between mRNA release from the site of transcription and pre-mRNA processing. Mol Cell 20:747–758

    Article  PubMed  CAS  Google Scholar 

  • Bousquet-Antonelli C, Presutti C, Tollervey D (2000) Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102:765–775

    Article  PubMed  CAS  Google Scholar 

  • Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, Brickner JH (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5:e81

    Article  PubMed  CAS  Google Scholar 

  • Briggs MW, Burkard KT, Butler JS (1998) Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem 273:13255–13263

    Article  PubMed  CAS  Google Scholar 

  • Burgess SM, Guthrie C (1993) A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell 73:1377–1391

    Article  PubMed  CAS  Google Scholar 

  • Burkard KT, Butler JS (2000) A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20:604–616

    Article  PubMed  CAS  Google Scholar 

  • Canavan R, Bond U (2007) Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiae. Nucleic Acids Res 35:6268–6279

    Article  PubMed  CAS  Google Scholar 

  • Carroll KL, Pradhan DA, Granek JA, Clarke ND, Corden JL (2004) Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 24:6241–6252

    Article  PubMed  CAS  Google Scholar 

  • Carroll KL, Ghirlando R, Ames JM, Corden JL (2007) Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. Rna 13:361–373

    Article  PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439

    Article  PubMed  CAS  Google Scholar 

  • Chavez S, Beilharz T, Rondon AG, Erdjument-Bromage H, Tempst P, Svejstrup JQ, Lithgow T, Aguilera A (2000) A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. Embo J 19:5824–5834

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, Li P, Skiba N, Peng Q, Alonso J, Brukhin V, Grossniklaus U, Ecker JR, Belostotsky DA (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131:1340–1353

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Abruzzi KC, Rosbash M, Belostotsky DA (2008) Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. Rna 14:66–77

    Article  PubMed  CAS  Google Scholar 

  • Custodio N, Carmo-Fonseca M, Geraghty F, Pereira HS, Grosveld F, Antoniou M (1999) Inefficient processing impairs release of RNA from the site of transcription. Embo J 18:2855–2866

    Article  PubMed  CAS  Google Scholar 

  • Custodio N, Vivo M, Antoniou M, Carmo-Fonseca M (2007) Splicing- and cleavage-independent requirement of RNA polymerase II CTD for mRNA release from the transcription site. J Cell Biol 179:199–207

    Article  PubMed  CAS  Google Scholar 

  • Damgaard CK, Kahns S, Lykke-Andersen S, Nielsen AL, Jensen TH, Kjems J (2008) A 5′ splice site enhances the recruitment of basal transcription initiation factors in vivo. Mol Cell 29:271–278

    Article  PubMed  CAS  Google Scholar 

  • Danin-Kreiselman M, Lee CY, Chanfreau G (2003) RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 11:1279–1289

    Article  PubMed  CAS  Google Scholar 

  • Das B, Butler JS, Sherman F (2003) Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol Cell Biol 23:5502–5515

    Article  PubMed  CAS  Google Scholar 

  • Dower K, Kuperwasser N, Merrikh H, Rosbash M (2004) A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript. Rna 10:1888–1899

    Article  PubMed  CAS  Google Scholar 

  • Dziembowski A, Ventura AP, Rutz B, Caspary F, Faux C, Halgand F, Laprevote O, Seraphin B (2004) Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. Embo J 23:4847–4856

    Article  PubMed  CAS  Google Scholar 

  • Fischer T, Strasser K, Racz A, Rodriguez-Navarro S, Oppizzi M, Ihrig P, Lechner J, Hurt E (2002) The mRNA export machinery requires the novel Sac3p–Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. Embo J 21:5843–5852

    Article  PubMed  CAS  Google Scholar 

  • Furger A, O’Sullivan JM, Binnie A, Lee BA, Proudfoot NJ (2002) Promoter proximal splice sites enhance transcription. Genes Dev 16:2792–2799

    Article  PubMed  CAS  Google Scholar 

  • Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116:63–73

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM, Jordan MI, Arkin AP, Davis RW (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101:793–798

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. PNAS 104:151–156

    Article  PubMed  CAS  Google Scholar 

  • Hieronymus H, Yu MC, Silver PA (2004) Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev 18:2652–2662

    Article  PubMed  CAS  Google Scholar 

  • Hilleren PJ, Parker R (2003) Cytoplasmic degradation of splice-defective pre-mRNAs and intermediates. Mol Cell 12:1453–1465

    Article  PubMed  CAS  Google Scholar 

  • Hilleren P, McCarthy T, Rosbash M, Parker R, Jensen TH (2001) Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413:538–542

    Article  PubMed  CAS  Google Scholar 

  • Isken O, Maquat LE (2007) Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21:1833–1856

    Article  PubMed  CAS  Google Scholar 

  • Iwanejko L, Smith KN, Loeillet S, Nicolas A, Fabre F (1999) Disruption and functional analysis of six ORFs on chromosome XV: YOL117w, YOL115w (TRF4), YOL114c, YOL112w (MSB4), YOL111c and YOL072w. Yeast 15:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Jensen TH, Boulay J, Rosbash M, Libri D (2001a) The DECD box putative ATPase Sub2p is an early mRNA export factor. Curr Biol 11:1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Jensen TH, Patricio K, McCarthy T, Rosbash M (2001b) A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Mol Cell 7:887–898

    Article  PubMed  CAS  Google Scholar 

  • Jensen TH, Dower K, Libri D, Rosbash M (2003) Early formation of mRNP: license for export or quality control. Mol Cell 11:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Jensen TH, Boulay J, Olesen JR, Colin J, Weyler M, Libri D (2004) Modulation of transcription affects mRNP quality. Mol Cell 16:235–244

    Article  PubMed  CAS  Google Scholar 

  • Johnson JM, Edwards S, Shoemaker D, Schadt EE (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21:93–102

    Article  PubMed  CAS  Google Scholar 

  • Kammler S, Andersen SL, Jensen TH (2008) The RNA exosome component hRrp6 is a target for 5-fluorouracil in human cells. (in press)

  • Kaneko S, Rozenblatt-Rosen O, Meyerson M, Manley JL (2007) The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcription termination. Genes Dev 21:1779–1789

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Klein R, Majewski J, Ott J (2004a) Estimating rates of alternative splicing in vertebrates and invertebrates. Nature Genet 36:915–917

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S (2004b) The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:517–522

    Article  PubMed  CAS  Google Scholar 

  • Kufel J, Allmang C, Petfalski E, Beggs J, Tollervey D (2003) Lsm Proteins are required for normal processing and stability of ribosomal RNAs. J Biol Chem 278:2147–2156

    Article  PubMed  CAS  Google Scholar 

  • Kufel J, Bousquet-Antonelli C, Beggs JD, Tollervey D (2004) Nuclear pre-mRNA decapping and 5′ degradation in yeast require the Lsm2–8p complex. Mol Cell Biol 24:9646–9657

    Article  PubMed  CAS  Google Scholar 

  • LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Rosbash M (1989) Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57:573–583

    Article  PubMed  CAS  Google Scholar 

  • Lewis A, Felberbaum R, Hochstrasser M (2007) A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J Cell Biol 178:813–827

    Article  PubMed  CAS  Google Scholar 

  • Libri D, Dower K, Boulay J, Thomsen R, Rosbash M, Jensen TH (2002) Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol Cell Biol 22:8254–8266

    Article  PubMed  CAS  Google Scholar 

  • Lorentzen E, Conti E (2006) The exosome and the proteasome: nano-compartments for degradation. Cell 125:651–654

    Article  PubMed  CAS  Google Scholar 

  • Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, Hinshaw JC, Garnier P, Prestwich GD, Leonardson A, Garrett-Engele P, Rush CM, Bard M, Schimmack G, Phillips JW, Roberts CJ, Shoemaker DD (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116:121–137

    Article  PubMed  CAS  Google Scholar 

  • Lund MK, Guthrie C (2005) The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol Cell 20:645–651

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Johnson AW, Bentley DL (2006) The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 20:954–965

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416:499–506

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25:930–939

    Article  PubMed  CAS  Google Scholar 

  • Menon BB, Sarma NJ, Pasula S, Deminoff SJ, Willis KA, Barbara KE, Andrews B, Santangelo GM (2005) Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc Natl Acad Sci U S A 102:5749–5754

    Article  PubMed  CAS  Google Scholar 

  • Milligan L, Torchet C, Allmang C, Shipman T, Tollervey D (2005) A nuclear surveillance pathway for mRNAs with defective polyadenylation. Mol Cell Biol 25:9996–10004

    Article  PubMed  CAS  Google Scholar 

  • Minvielle-Sebastia L, Winsor B, Bonneaud N, Lacroute F (1991) Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol Cell Biol 11:3075–3087

    PubMed  CAS  Google Scholar 

  • Mitchell P, Petfalski E, Houalla R, Podtelejnikov A, Mann M, Tollervey D (2003) Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 23:6982–6992

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ (2002) Nuclear RNA turnover. Cell 108:431–434

    Article  PubMed  CAS  Google Scholar 

  • Palancade B, Zuccolo M, Loeillet S, Nicolas A, Doye V (2005) Pml39, a novel protein of the nuclear periphery required for nuclear retention of improper messenger ribonucleoparticles. Mol Biol Cell 16:5258–5268

    Article  PubMed  CAS  Google Scholar 

  • Petfalski E, Dandekar T, Henry Y, Tollervey D (1998) Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol Cell Biol 18:1181–1189

    PubMed  CAS  Google Scholar 

  • Proudfoot NJ (2003) Dawdling polymerases allow introns time to splice. Nat Struct Biol 10:876–878

    Article  PubMed  CAS  Google Scholar 

  • Rigo F, Kazerouninia A, Nag A, Martinson HG (2005) The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation. Mol Cell 20:733–745

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro S, Fischer T, Luo MJ, Antunez O, Brettschneider S, Lechner J, Perez-Ortin JE, Reed R, Hurt E (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116:75–86

    Article  PubMed  CAS  Google Scholar 

  • Roth KM, Wolf MK, Rossi M, Butler JS (2005) The nuclear exosome contributes to autogenous control of NAB2 mRNA levels. Mol Cell Biol 25:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Rougemaille M, Gudipatif RK, Olesen JR, Thomsen R, Seraphin B, Libri D, Jensen TH (2007) Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. Embo J 26:2317–2326

    Article  PubMed  CAS  Google Scholar 

  • Rutz B, Seraphin B (2000) A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. Embo J 19:1873–1886

    Article  PubMed  CAS  Google Scholar 

  • Saguez C, Schmid M, Olesen JR, Ghazy M, Qu X, Poulsen MB, Nasser T, Moore C, Jensen TH (2008) Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol Cell (in press)

  • Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK (2006) Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 21:379–391

    Article  PubMed  CAS  Google Scholar 

  • Schroeder SC, Zorio DA, Schwer B, Shuman S, Bentley D (2004) A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol Cell 13:377–387

    Article  PubMed  CAS  Google Scholar 

  • Schwer B, Mao X, Shuman S (1998) Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res 26:2050–2057

    Article  PubMed  CAS  Google Scholar 

  • Sexton T, Schober H, Fraser P, Gasser SM (2007) Gene regulation through nuclear organization. Nature Struct Mol Biol 14:1049–1055

    Article  CAS  Google Scholar 

  • Stead JA, Costello JL, Livingstone MJ, Mitchell P (2007) The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res 35:5556–5567

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz EJ, Ng SB, Cloute JP, Brow DA (2006a) cis- and trans-Acting determinants of transcription termination by yeast RNA polymerase II. Mol Cell Biol 26:2688–2696

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA (2006b) Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24:735–746

    Article  PubMed  CAS  Google Scholar 

  • Strasser K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondon AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–778

    Article  PubMed  CAS  Google Scholar 

  • Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23:853–864

    Article  PubMed  CAS  Google Scholar 

  • Thomsen R, Saguez C, Nasser T, Jensen TH (2008) General, rapid, and transcription-dependent fragmentation of nucleolar antigens in S. cerevisiae mRNA export mutants. RNA 4:706–716

    Article  CAS  Google Scholar 

  • Torchet C, Bousquet-Antonelli C, Milligan L, Thompson E, Kufel J, Tollervey D (2002) Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell 9:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • van Hoof A, Lennertz P, Parker R (2000) Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20:441–452

    Article  PubMed  Google Scholar 

  • Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3:e189

    Article  PubMed  CAS  Google Scholar 

  • Varani G (1997) A cap for all occasions. Structure 5:855–858

    Article  PubMed  CAS  Google Scholar 

  • Vasiljeva L, Buratowski S (2006) Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 21:239–248

    Article  PubMed  CAS  Google Scholar 

  • Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F (2005) Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. Embo J 24:813–823

    Article  PubMed  CAS  Google Scholar 

  • Willingham AT, Gingeras TR (2006) TUF love for “junk” DNA. Cell 125:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B, Libri D, Jacquier A (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–737

    Article  PubMed  CAS  Google Scholar 

  • Zenklusen D, Vinciguerra P, Wyss JC, Stutz F (2002) Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol Cell Biol 22:8241–8253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pascal Preker and Francisco Malagon for critical reading of the manuscript, three anonymous referees for their valuable input, and Domenico Libri for sharing unpublished data. The work was supported by the Danish National Research Foundation (Grundforskningsfonden) and the Novo Nordisk Foundation. MS is the recipient of a Human Frontier Science Program long-term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manfred Schmid or Torben Heick Jensen.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Jensen, T.H. Quality control of mRNP in the nucleus. Chromosoma 117, 419–429 (2008). https://doi.org/10.1007/s00412-008-0166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0166-4

Keywords

Navigation