Skip to main content
Log in

Cytological analysis of MRE11 protein during early meiotic prophase I in Arabidopsis and tomato

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Early recombination nodules (ENs) are multiprotein complexes that are thought to be involved in synapsis and recombination, but little is known about their components or how they may be involved in these events. In this study, we describe the cytological behavior of a possible EN component, MRE11, a protein that is important for the repair of the numerous, programmed deoxyribonucleic acid double-strand breaks (DSBs) that occur early in the meiotic prophase. By immunofluorescence, many MRE11 foci were associated with chromosomal axes during early prophase I in both wild-type Arabidopsis and tomato primary microsporocytes. Similar patterns of MRE11 foci were observed in two Arabidopsis mutants (Atspo11-1 and Atprd1) that are defective in DSB formation and synapsis. In tomato chromosomes, MRE11 foci were more common in distal euchromatin than in proximal heterochromatin, consistent with known EN patterns. However, electron microscopic immunogold localization demonstrated that only about 10% of ENs were labeled, and most MRE11 label was associated with synaptonemal complex components. Thus, in plants, MRE11 foci are not dependent on DSB formation, and most MRE11 foci do not correspond to ENs. More generally, our results show that the simple presence of large numbers of fluorescent foci associated with synapsing chromosomes is insufficient evidence to equate these foci with ENs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson LK, Stack SM (2005) Recombination nodules in plants. Cytogenet Genome Res 109:198–204

    Article  CAS  PubMed  Google Scholar 

  • Anderson LK, Stack SM, Todd RJ, Ellis RP (1994) A monoclonal antibody to lateral element proteins in synaptonemal complexes of Lilium longiflorum. Chromosoma 103:357–367

    Article  CAS  PubMed  Google Scholar 

  • Anderson LK, Offenberg HH, Verkuijlen WMHC, Heyting C (1997) RecA-like proteins are components of early meiotic nodules in lily. Proc Natl Acad Sci USA 94:6868–6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson LK, Hooker KD, Stack SM (2001) The distribution of early recombination nodules on zygotene bivalents from plants. Genetics 159:1259–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong SJ, Caryl AP, Jones GH, Franklin FCH (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655

    Article  CAS  PubMed  Google Scholar 

  • Assenmacher N, Hopfner K-P (2004) MRE11/RAD50/NBS1: complex activities. Chromosoma 113:157–166

    Article  CAS  PubMed  Google Scholar 

  • Borde V (2007) The multiple roles of the Mre11 complex for meiotic recombination. Chrom Res 15:551–563

    Article  CAS  PubMed  Google Scholar 

  • Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol Cell 13:389–401

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Hooykaas P (2002) Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants. Plant Cell 14:2451–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S-B, Anderson LK, Sherman JD, Royer SM, Stack SM (2007) Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics 176:2131–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Marquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mezard C, Grelon M (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632

    Article  CAS  PubMed  Google Scholar 

  • Chelysheva L, Gendrot G, Vezon D, Doutriaux M-P, Mercier R, Grelon M (2007) Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana. PLoS Genet 3:0802–0813

    Article  CAS  Google Scholar 

  • Cherry SM, Adelman CA, Theunissen JW, Hassold TJ, Hunt PA, Petrini JHJ (2007) The Mre11 complex influences DNA repair, synapsis, and crossing over in murine meiosis. Curr Biol 17:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin GM, Villeneuve AM (2001) C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G2 DNA damage checkpoint. Genes Devel 15:522–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua PR, Roeder GS (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93:349–359

    Article  CAS  PubMed  Google Scholar 

  • D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mole Cell Biol 3:317–327

    Article  Google Scholar 

  • Daoudal-Cotterell S, Gallego ME, White CI (2002) The plant Rad50-Mre11 protein complex. FEBS Lett 516:164–166

    Article  CAS  PubMed  Google Scholar 

  • de Boer E, Heyting C (2006) The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115:220–234

    Article  PubMed  Google Scholar 

  • De Muyt A, Vezon D, Gendrot G, Gallois J-L, Stevens R, Grelon M (2007) AtRPD1 is required for meiotic double-strand break formation in Arabidopsis thaliana. EMBO J 26:4126–4137

    Article  PubMed  PubMed Central  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000a) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113:673–682

    CAS  PubMed  Google Scholar 

  • Eijpe M, Offenberg HH, Goedecke W, Heyting C (2000b) Localisation of RAD50 and MRE11 in spermatocyte nuclei of mouse and rat. Chromosoma 109:123–132

    Article  CAS  PubMed  Google Scholar 

  • Gerecke EE, Zolan ME (2000) An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis. Genetics 154:1125–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessberger R (2002) The many functions of SMC proteins in chromosome dynamics. Nat Rev Mol Cell Biol 3:767–778

    Article  CAS  PubMed  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    Article  CAS  PubMed  Google Scholar 

  • Kleckner N (2006) Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115:175–194

    Article  PubMed  Google Scholar 

  • Lam WS, Yang X, Makaroff CA (2005) Characterization of Arabidopsis thaliana SMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J Cell Sci 118:3037–3048

    Article  CAS  PubMed  Google Scholar 

  • Lhuissier FGP, Offenberg HH, Wittich PE, Vischer NOE, Heyting C (2007) The mismatch repair protein MLH1 marks a subset of strongly interfering crossovers in tomato. Plant Cell 19:862–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKnight TD, Riha K, Shippen DE (2002) Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol 48:331–337

    Article  CAS  PubMed  Google Scholar 

  • Mirzoeva OK, Petrini JHJ (2003) DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol Cancer Res 1:207–218

    CAS  PubMed  Google Scholar 

  • Moens PB, Heyting C, Dietrich AJJ, van Raamsdonk W, Chen Q (1987) Synaptonemal complex antigen location and conservation. J Cell Biol 105:93–103

    Article  CAS  PubMed  Google Scholar 

  • Moens PB, Freire R, Tarsounas M, Spyropoulos B, Jackson SP (2000) Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom’s syndrome, suggest a role in recombination during meiotic prophase. J Cell Sci 113:663–672

    CAS  PubMed  Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    CAS  PubMed  Google Scholar 

  • Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta K, Nicolas A, Furuse M, Nabetani A, Ogawa H, Shibata T (1998) Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc Natl Acad Sci USA 95:646–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558

    Article  CAS  PubMed  Google Scholar 

  • Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  PubMed Central  Google Scholar 

  • Peoples-Holst TL, Burgess SM (2005) Multiple branches of the meiotic recombination pathway contribute independently to homolog pairing and stable juxtaposition during meiosis in budding yeast. Genes Devel 19:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson DG, Lapitan N, Stack SM (1999) Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics 152:427–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    Article  CAS  PubMed  Google Scholar 

  • Riha K, Heacock ML, Shippen DE (2006) The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Ann Rev Genet 40:237–277

    Article  CAS  PubMed  Google Scholar 

  • Stack S, Anderson L (1986a) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. III. Recombination nodules and crossing over in Lycopersicon esculentum (tomato). Chromosoma 94:253–258

    Article  Google Scholar 

  • Stack SM, Anderson LK (1986b) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. II. Synapsis in Lycopersicon esculentum. Am J Bot 73:264–281

    Article  Google Scholar 

  • Stack SM, Sherman JD, Anderson LK, Herickhoff LS (1993) Meiotic nodules in vascular plants. In: Sumner AT, Chandley AC (eds) Chromosomes today. Chapman & Hall, London, pp 301–311

    Chapter  Google Scholar 

  • Stracker TH, Theunissen J-WF, Morales M, Petrini JHJ (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair 3:845–854

    Article  CAS  PubMed  Google Scholar 

  • Theunissen JW, Kaplan MI, Hunt PA, Williams BR, Ferguson DO, Alt FW, Petrini JHJ (2003) Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11ATLD1/ATLD1 mice. Mol Cell 12:1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95:705–716

    Article  CAS  PubMed  Google Scholar 

  • Zhong X-B, de Jong JH, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    Article  CAS  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: Integrating structure and function. Ann Rev Genet 33:603–754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Song-Bin Chang for providing biotin-labeled telomere repeat probes for FISH and Edu Holub and the animal facilities group at Wageningen University for expert technical assistance. We also thank Stephen Stack and two anonymous reviewers for valuable comments on the manuscript. This research was supported by a grant from the National Science Foundation (MCB-064344 to LKA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorinda K. Anderson.

Additional information

Communicated by E.A. Nigg.

Leslie D. Lohmiller and Arnaud De Muyt contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(PDF 441 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmiller, L.D., De Muyt, A., Howard, B. et al. Cytological analysis of MRE11 protein during early meiotic prophase I in Arabidopsis and tomato. Chromosoma 117, 277–288 (2008). https://doi.org/10.1007/s00412-007-0147-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0147-z

Keywords

Navigation