Skip to main content
Log in

The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We have studied the in vitro reconstitution of sperm nuclei and small DNA templates to mitotic chromatin in Xenopus laevis egg extracts by three-dimensional (3D) electron microscopy (EM) tomography. Using specifically developed software, the reconstituted chromatin was interpreted in terms of nucleosomal patterns and the overall chromatin connectivity. The condensed chromatin formed from small DNA templates was characterized by aligned arrays of packed nucleosomal clusters having a typical 10-nm spacing between nucleosomes within the same cluster and a 30-nm spacing between nucleosomes in different clusters. A similar short-range nucleosomal clustering was also observed in condensed chromosomes; however, the clusters were smaller, and they were organized in 30- to 40-nm large domains. An analysis of the overall chromatin connectivity in condensed chromosomes showed that the 30–40-nm domains are themselves organized into a regularly spaced and interconnected 3D chromatin network that extends uniformly throughout the chromosomal volume, providing little indication of a systematic large-scale organization. Based on their topology and high degree of interconnectedness, it is unlikely that 30–40-nm domains arise from the folding of local stretches of nucleosomal fibers. Instead, they appear to be formed by the close apposition of more distant chromatin segments. By combining 3D immunolabeling and EM tomography, we found topoisomerase II to be randomly distributed within this network, while the stable maintenance of chromosomes head domain of condensin was preferentially associated with the 30–40-nm chromatin domains. These observations suggest that 30–40-nm domains are essential for establishing long-range chromatin associations that are central for chromosome condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adolph KW, Kreisman LR, Kuehn RL (1986) Assembly of chromatin fibers into metaphase chromosomes analyzed by transmission electron microscopy and scanning electron microscopy. Biophys J 49:221–231

    Article  PubMed  CAS  Google Scholar 

  • Akhmedov AT, Frei C, Tsai-Pflugfelder M, Kemper B, Gasser SM, Jessberger R (1998) Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J Biol Chem 273:24088–24094

    Article  PubMed  CAS  Google Scholar 

  • Akhmedov AT, Gross B, Jessberger R (1999) Mammalian SMC3 C-terminal and coiled-coil protein domains specifically bind palindromic DNA, do not block DNA ends, and prevent DNA bending. J Biol Chem 274:38216–38224

    Article  PubMed  CAS  Google Scholar 

  • Almagro S, Riveline D, Hirano T, Houchmandzadeh B, Dimitrov S (2004) The mitotic chromosome is an assembly of rigid elastic axes organized by structural maintenance of chromosomes (SMC) proteins and surrounded by a soft chromatin envelope. J Biol Chem 279:5118–5126

    Article  PubMed  CAS  Google Scholar 

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  PubMed  CAS  Google Scholar 

  • Ball AR, Yokomori K (2001) The structural maintenance of chromosomes (SMC) family of proteins in mammals. Chromosome Res 9:85–96

    Article  CAS  Google Scholar 

  • Bazatt-Jones DP, Kimura K, Hirano T (2002) Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol Cell 9:1183–1190

    Article  Google Scholar 

  • Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL (1998) Nucleosomes, linker DNA, and linker histones form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci 95:14173–14178

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS, Sedat JW, Agard DA (1987) A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J Cell Biol 105:77–92

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS, Braunfeld MB, Sedat JW, Agard DA (1989) Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98:129–143

    Article  PubMed  CAS  Google Scholar 

  • Bode J, Goetze S, Heng H, Krawetz SA, Benham C (2003) From DNA structure to gene expression: mediators of nuclear compartmentalization and dynamics. Chromosome Res 11:435–445

    Article  PubMed  CAS  Google Scholar 

  • Butler PJG, Thomas JO (1998) Dinucleosomes show compaction by ionic strength, consistent with bending of linker DNA. J Mol Biol 281:401–407

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Hughes DD, Chan TA, Sedat JW, Agard DA (1996) IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J Struct Biol 116:56–60

    Article  PubMed  CAS  Google Scholar 

  • Cuvier O, Hirano T (2003) A role of topoisomerase II in linking DNA replication to chromosome condensation. J Cell Biol 160:645–655

    Article  PubMed  CAS  Google Scholar 

  • Dong F, van Holde KE (1991) Nucleosome positioning is determined by the (H3–H4)2 tetramer. Proc Natl Acad Sci 88:10596–10600

    Article  PubMed  CAS  Google Scholar 

  • Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573

    Article  PubMed  CAS  Google Scholar 

  • Dubochet J, Noll M (1978) Nucleosome arcs and helices. Science 202:280–286

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Heck MM (1985) Localization of topoisomerase II in mitotic chromosomes. J Cell Biol 100:1716–1725

    Article  PubMed  CAS  Google Scholar 

  • El-Alfy M, Turner JP, Nadler NJ, Liu DF, Leblond CP (1994) Subdivision of the mitotic cycle into eleven stages, on the basis of the chromosomal changes observed in mouse duodenal crypt cells stained by the DNA-specific feulgen reaction. Anat Rec 238:289–296

    Article  PubMed  CAS  Google Scholar 

  • El-Alfy M, Liu DF, Leblond CP (1995) DNA Changes involved in the formation of metaphase chromosomes, as observed in mouse duodenal crypt cells stained by osmium-ammine. Anat Rec 242:433–448

    Article  PubMed  CAS  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci 73:1897–1901

    Article  PubMed  CAS  Google Scholar 

  • Finch JT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M, Klug A (1977) Structure of nucleosome core particles of chromatin. Nature 269:29–36

    Article  PubMed  CAS  Google Scholar 

  • Fung JC, Liu W, de Ruijter WJ, Chen H, Abbey CK, Sedat JW, Agard DA (1996) Towards fully automated high-resolution electron tomography. J Struct Biol 116:181–189

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laroche T, Falquet J, Boy de la Tour E, Laemmli UK (1986) Metaphase chromosome structure involvement of topoisomerase II. J Mol Biol 188:613–629

    Article  PubMed  CAS  Google Scholar 

  • Giannasca PJ, Horowitz RA, Woodcock CL (1993) Transitions between in situ and isolated chromatin. J Cell Sci 105:551–561

    PubMed  CAS  Google Scholar 

  • Griffiths G (1993) Fixation for fine structure preservation and immunocytochemistry. In: Griffiths G (ed) Fine structure immunocytochemistry. Springer, Berlin, pp 26–80

    Google Scholar 

  • Harauz G, Borland L, Bahr GF, Zeitler E, van Heel M (1987) Three-dimensional reconstruction of a human metaphase chromosome from electron micrographs. Chromosoma 95:366–374

    Article  PubMed  CAS  Google Scholar 

  • Hayat MA (1981) Principles and techniques of electron microscopy. University Park Press, Baltimore

    Google Scholar 

  • Hirano T, Mitchison TJ (1993) Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in xenopus egg extracts. J Cell Biol 120:601–612

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a xenopus homolog of the drosophila barren protein. Cell 89:511–521

    Article  PubMed  CAS  Google Scholar 

  • Horowitz RA, Agard DA, Sedat JW, Woodcock CL (1994) The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol 125:1–10

    Article  PubMed  CAS  Google Scholar 

  • Horowitz RA, Koster AJ, Walz J, Woodcock CL (1997) Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers. J Struct Biol 120:353–362

    Article  PubMed  CAS  Google Scholar 

  • Houchmandzadeh B, Dimitrov S (1999) Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol 145:215–223

    Article  PubMed  CAS  Google Scholar 

  • Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5:323–336

    Article  PubMed  CAS  Google Scholar 

  • Iwano M, Fukui K, Takaichi S, Isogai A (1997) Globular and fibrous structure in barley chromosomes revealed by high-resolution scanning electron microscopy. Chromosome Res 5:341–349

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Zou J-Y, Cowan SW, Kjelgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119

    Article  PubMed  Google Scholar 

  • Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90:625–634

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano T (2000) Dual roles of the 11S regulatory subcomplex in condensin functions. Proc Natl Acad Sci 97:11972–11977

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano M, Kobayashi R, Hirano T (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282:487–490

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR (1999) 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98:239–248

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Cuvier O, Hirano T (2001) Chromosome condensation by a human condensin complex in xenopus egg extracts. J Biol Chem 276:5417–5420

    Article  PubMed  CAS  Google Scholar 

  • Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775–785

    Article  PubMed  CAS  Google Scholar 

  • König P, Braunfeld MB, Agard DA (2005) Use of surface enrichment and cryo-embedding to prepare in vitro reconstituted mitotic chromosomes by EM tomography. Ultramicroscopy 103:261–274

    Article  PubMed  CAS  Google Scholar 

  • Koshland D, Strunnikov A (1996) Mitotic chromosome condensation. Annu Rev Cell Dev Biol 12:305–333

    Article  PubMed  CAS  Google Scholar 

  • Krajewski WA, Ausio J (1996) Modulation of the higher-order folding of chromatin by deletion of histone H3 and H4 terminal domains. Biochem J 316:395–400

    PubMed  CAS  Google Scholar 

  • Legagneux V, Cubizolles F, Watrin E (2004) Multiple roles of Condensins: a complex story. Biol Cell 96:201–213

    Article  PubMed  CAS  Google Scholar 

  • Löwe J, Cordell SC, van den Ent F (2001) Crystal Structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. J Mol Biol 306:25–35

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 6648:251–260

    Google Scholar 

  • Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4:467–480

    Article  PubMed  CAS  Google Scholar 

  • Maeshima K, Eltsov M, Laemmli UK (2005) Chromosome structure: improved immunolabeling for electron microscopy. Chromosoma 114:365–375

    Article  PubMed  Google Scholar 

  • Maresca TJ, Freedman BS, Heald R (2005) Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts. J Cell Biol 169:859–869

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1983) Stereoscopic Scanning Electron Microscopy of the Chromosomes in Vicia faba (Broad Beans). J Ultrastruct Res 82:322–326

    Article  PubMed  CAS  Google Scholar 

  • McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5:1395–1402

    PubMed  CAS  Google Scholar 

  • Micheli G, Luzzatto AR, Carri MT, de Capoa A, Pelliccia F (1993) Chromosome length and DNA loop size during early embryonic development of Xenopus laevis. Chromosoma 102:478–483

    Article  PubMed  CAS  Google Scholar 

  • Mullinger AM, Johnson RT (1987) Disassembly of the mammalian metaphase chromosome into its subunits: studies with ultraviolet light and repair synthesis inhibitors. J Cell Sci 87:55–69

    PubMed  Google Scholar 

  • Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    PubMed  CAS  Google Scholar 

  • Ohsumi K, Katagiri C, Kishimoto T (1993) Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262:2033–2035

    Article  PubMed  CAS  Google Scholar 

  • Olins AL, Olins DE, Zentgraf H, Franke WW (1980) Visualization of nucleosomes in thin sections by stereo electron microscopy. J Cell Biol 87:833–836

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Philpott A, Leno GH (1992) Nucleoplasmin remodels sperm chromatin in xenopus egg extracts. Cell 69:759–767

    Article  PubMed  CAS  Google Scholar 

  • Poirier MG, Marko JF (2002) Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci 99:15393–15397

    Article  PubMed  CAS  Google Scholar 

  • Poljak L, Käs E (1995) Resolving the role of topoisomerase II in chromatin structure and function. Trends Cell Biol 5:348–354

    Article  PubMed  CAS  Google Scholar 

  • Pope LH, Xiong C, Marko JF (2006) Proteolysis of mitotic chromosomes induces gradual and anisotropic decondensation correlated with a reduction of elastic modulus and structural sensitivity to rarely cutting restriction enzymes. Mol Biol Cell 17:104–113

    Article  PubMed  CAS  Google Scholar 

  • Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116:3677–3685

    Article  PubMed  CAS  Google Scholar 

  • Pyne CK (2001) Reorganization of chromatin in Xenopus egg extracts: electron microscopic studies. Biol Cell 93:309–320

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan V (1997) Histone H1 and chromatin higher-order structure. Crit Rev Eukaryot Gene Expr 7:215–230

    PubMed  CAS  Google Scholar 

  • Rattner JB, Lin CC (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell 42:291–296

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJJ, Fairall L, Huynh VAT, Rhodes D (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci 103:6506–6511

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Hizume K, Sutani T, Takeyasu K, Yanagida M (2003) Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein–protein assembly. EMBO J 22:2764–2775

    Article  PubMed  CAS  Google Scholar 

  • Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    Article  PubMed  CAS  Google Scholar 

  • Stack SM, Anderson LK (2001) A model for chromosome structure during the mitotic and meiotic cell cycles. Chromosome Res. 9:175–198

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1996) The distribution of topoisomerase II on mammalian chromosomes. Chromosome Res 4:5–14

    Article  PubMed  CAS  Google Scholar 

  • Sutani T, Yanagida M (1997) DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature 388:798–801

    Article  PubMed  CAS  Google Scholar 

  • Swedlow JR, Hirano T (2003) The making of the mitotic chromosome: modern insights into classical questions. Mol Cell 11:557–569

    Article  PubMed  CAS  Google Scholar 

  • Swedlow JR, Sedat JW, Agard DA (1993) Multiple chromosomal populations of topoisomerase II detected in vivo by time-lapse, three-dimensional wide-field microscopy. Cell 73:97–108

    Article  PubMed  CAS  Google Scholar 

  • Tanigushi T, Takayama S (1986) High-order structure of metaphase chromosomes: evidence for a multiple coiling model. Chromosoma 1986:511–514

    Article  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    Article  PubMed  CAS  Google Scholar 

  • Vassetzky YS, Dang Q, Benedetti P, Gasser SM (1994) Topoisomerase II forms multimers in vitro: effects of metals, beta-glycerophosphate, and phosphorylation of its C-terminal domain. Mol Cell Biol 14:6962–6974

    PubMed  CAS  Google Scholar 

  • Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25:16–25

    Google Scholar 

  • Ward WS (1993) Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol Reprod 48:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Schild C (1991) Chromatin assembly. Methods Cell Biol 36:541–559

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and H1 stoichiometry and nucleosome repeat length. Chromosome Research 14:17–25

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Lowary PT, Widom J (1990) Direct detection of linker DNA bending in defined-length oligomers of chromatin. Proc Natl Acad Sci 87:7603–7607

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Hayes JJ (2003) Structures and interactions of the core histone tail domains. Biopolymers 68:539–546

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF, Belyaeva ES (2003) Intercalary heterochromatin and genetic silencing. Bioessays 25:1040–1051

    Article  PubMed  CAS  Google Scholar 

  • Zobel CR, Beer M (1961) Electron stains. I. Chemical studies on the interaction of DNA with uranyl salts. J Biophys Biochem Cytol 10:335–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Jason Swedlow for the advice in preparing X. laevis egg extracts and continuous support and interest in the work, Dr. Tatsuya Hirano for providing antibodies against topoisomerase II and condensin, and Dr. Bettina Keszthelyi for calculating double-tilt reconstructions. We are indebted to Eric Branlund for the help in developing programs and to Dr. Heather McCune for the critical reading of the manuscript. P. König acknowledges the support of the Swiss National fund (823A-050445). This work was also supported by the NIH (GM-31627), the Howard Hughes Medical Institute, and the Keck foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Agard.

Additional information

Communicated by E.A. Nigg

Electronic supplementary material.

Below is the link to the electronic supplementary material.

412_2007_101_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, P., Braunfeld, M.B., Sedat, J.W. et al. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116, 349–372 (2007). https://doi.org/10.1007/s00412-007-0101-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0101-0

Keywords

Navigation