Skip to main content
Log in

Comparative polytene chromosome maps of D. montana and D. virilis

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosomal inversion polymorphism was characterized in Finnish Drosophila montana populations. A total of 14 polymorphic inversions were observed in Finnish D. montana of which nine had not been described before. The number of polymorphic inversions in each chromosome was not significantly different from that expected, assuming equal chance of occurrence in the euchromatic genome. There was, however, no correlation between the number of polymorphic inversions and that of fixed inversions in each chromosome. Therefore, a simple neutral model does not explain the evolutionary dynamics of inversions. Furthermore, in contrast to results obtained by others, no significant correlation was found between the two transposable elements (TEs) Penelope and Ulysses and inversion breakpoints in D. montana. This result suggests that these TEs were not involved in the creation of the polymorphic inversions seen in D. montana. A comparative analysis of D. montana and Drosophila virilis polytene chromosomes 4 and 5 was performed with D. virilis bacteriophage P1 clones, thus completing the comparative studies of the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andolfatto P, Depaulis F, Navarro A (2001) Inversion polymorphism and nucleotide variability in Drosophila. Genet Res 77:1–8

    Article  PubMed  CAS  Google Scholar 

  • Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A (1999) A transposable element mediated the generation of a Drosophila widespread chromosomal inversion. Science 285:415–418

    Article  PubMed  Google Scholar 

  • Cáceres M, Puig M, Ruiz A (2001) Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 11:1353–1364

    Article  PubMed  Google Scholar 

  • Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex chromosomes and autosomes. Am Nat 130:113–146

    Article  Google Scholar 

  • Dobzhansky T (1949) Observations and experiments on natural selection in Drosophila. In: Proceedings of the International Congress of Genetics, pp 210–224

  • Evgen’ev MB, Zelentsova ES, Shostak N, Kozitsina M, Barskyi V, Lankenau D-H, Corces VG (1997) Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA 94:196–201

    Article  PubMed  CAS  Google Scholar 

  • Evgen’ev MB, Zelentsova H, Poluectova H, Lyozin GT, Veleikodvorskaja V, Pyatkov KI, Zhivotovsky LA, Kidwell MG (2000) Mobile elements and chromosomal evolution in the virilis group of Drosophila. Proc Natl Acad Sci USA 97:11337–11342

    Article  PubMed  CAS  Google Scholar 

  • González J, Ranz JM, Ruiz A (2002) Chromosomal elements evolve at different rates in the Drosophila genome. Genetics 161:1137–1154

    PubMed  Google Scholar 

  • Gubenko IS, Evgen’ev MB (1984) Cytological and linkage maps of Drosophila virilis chromosomes. Genetica 65:127–139

    Article  Google Scholar 

  • Guest WC (1959) Cytological studies in the littoralis-montana complex of the virilis species group of the genus Drosophila. Ph.D. thesis, The University of Texas

  • Hsu TC (1952) Chromosomal variation and evolution in the virilis group of Drosophila. Univ Texas Publ 5204:35–72

    Google Scholar 

  • Iriarte PJF, Norry FM, Hasson ER (2003) Chromosomal inversions effect body size and shape in different breeding resources in Drosophila buzzatii. Heredity 91:51–59

    Article  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    PubMed  CAS  Google Scholar 

  • Laporte V, Charlesworth B (2002) Effective population size and population subdivision in demographically structured populations. Genetics 162:501–519

    PubMed  CAS  Google Scholar 

  • Lozovskaya ER, Scheinker VS, Evgen’ev MB (1990) A hybrid dysgenic syndrome in Drosophila virilis. Genetics 126:619–623

    PubMed  CAS  Google Scholar 

  • Mathiopoulos KD, della Torre A, Santolamazza F, Predazzi V, Petrarca V, Coluzzi M (1999) Are chromosomal inversions induced by transposable elements? A paradigm from the malaria mosquito Anopheles gambiae. Parassitologia 41:119–123

    PubMed  CAS  Google Scholar 

  • Moorhead PS (1954) Chromosome variation in giant forms of Drosophila montana. Univ Texas Publ 5422:106–129

    Google Scholar 

  • Navarro A, Barton NH (2003) Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57:447–459

    PubMed  Google Scholar 

  • Päällysaho S (2002) In situ hybridisation analysis of the X-linked genes in the species of the virilis group of Drosophila. Genetica 114:73–79

    Article  PubMed  Google Scholar 

  • Päällysaho S, Huttunen S, Hoikkala A (2001) Identification of X chromosomal restriction fragment polymorphism markers and their use in a gene localization study in Drosophila virilis and D. littoralis. Genome 44:242–248

    Article  PubMed  Google Scholar 

  • Päällysaho S, Vieira CP, Hoikkala A, Vieira J (2005) Evidence for introgression in differentiated North-American and Finnish Drosophila montana populations. Genetica 123:285–293

    Article  PubMed  Google Scholar 

  • Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (dC-dA)n (dG-dT)n sequences have evolutionary conserved chromosomal locations in Drosophila with implication for roles in chromosome structure and function. EMBO J 6:1781–1789

    PubMed  CAS  Google Scholar 

  • Patterson JT, Stone WS (1952) Evolution in the genus Drosophila. Macmillan, New York

    Google Scholar 

  • Powell JR (1997) Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press, New York

    Google Scholar 

  • Puttagunta R, Gordon LA, Meyer GE, Kapfhamer D, Lamerdin JE, Kantheti P, Portman KM, Chung WK, Jenne DE, Olse AS, Burmeister M (2000) Comparative maps of human 19p13.3 and mouse chromosome 10 allow identification of sequences at evolutionary breakpoints. Genome Res 10:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Stone WS, Guest WC, Wilson FD (1960) The evolutionary implications of the cytological polymorphism and phylogeny of the virilis group of Drosophila. Proc Natl Acad Sci USA 46: 350–361

    Article  PubMed  CAS  Google Scholar 

  • Throckmorton LH (1982) The virilis species group. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of Drosophila, vol. 3b. Academic, London, pp 227–296

    Google Scholar 

  • Van’t Land J, Van Putten WF, Villaroel H, Kamping A, Van Delden W (2000) Latitudinal variation for two enzyme loci and an inversion polymorphism in Drosophila melanogaster from Central and South America. Evolution 54:201–209

    Google Scholar 

  • Vieira J, Hoikkala A (2001) Variability levels, population size and structure of American and European Drosophila montana populations. Heredity 86:506–511

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, Vieira CP, Hartl DL, Lozovskaya ER (1997a) Discordant rates of chromosome evolution in the Drosophila virilis species group. Genetics 147:223–230

    PubMed  CAS  Google Scholar 

  • Vieira J, Vieira CP, Hartl DL, Lozovskaya ER (1997b) A framework physical map of Drosophila virilis based on P1 clones: application in genome evolution. Chromosoma 106: 99–107

    Article  PubMed  CAS  Google Scholar 

  • Zelentsova H, Poluectova H, Mnjoian L, Lyozin G, Veleikodvorskaja V, Zhivotovsky L, Kidwell MG, Evgen’ev MB (1999) Distribution and evolution of mobile elements in the virilis species group of Drosophila. Chromosoma 108:443–456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the European Commission as part of a Research Training Network (HPRN-CT-2002-00266). Special thanks also to Oulanka Biological Station and LAPBIAT project for funding the collection of biological material. The authors, Ramiro Morales-Hojas and Seliina Päällysaho, contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Morales-Hojas.

Additional information

Communicated by S. Henikoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Hojas, R., Päällysaho, S., Vieira, C.P. et al. Comparative polytene chromosome maps of D. montana and D. virilis . Chromosoma 116, 21–27 (2007). https://doi.org/10.1007/s00412-006-0075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0075-3

Keywords

Navigation