Skip to main content
Log in

A specific SR protein binds preferentially to the secretory protein gene transcripts in salivary glands of Chironomus tentans

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The members of the serine–arginine (SR) family of proteins play multiple roles in posttranscriptional gene expression. Initially considered as essential splicing factors confined to the nucleus and regulating constitutive and alternative splicing, SR proteins are now known to shuttle between the nucleus and the cytoplasm and to be involved in mRNA biogenesis, transport, and translation. In Chironomus tentans, hrp45 is an SR protein structurally similar to the Drosophila SRp55/B52 SR protein. We have studied how hrp45, hrp36 [a heterogenous nuclear ribonucleoprotein (hnRNP) protein], and small nuclear RNP (snRNP) proteins are distributed in the transcriptionally active loci of polytene chromosomes in C. tentans. Immunofluorescence visualization of the proteins in double-labeling experiments revealed that hrp45 preferentially associates with a small number of puffs. On the other hand, hrp36 and snRNP proteins were found distributed in a large number of loci with little quantitative difference. Remarkably, hrp45-labeled loci coincide with the sites of transcription of premessenger RNPs of secretory protein (sp) genes. Because the labeling was found sensitive to RNase A treatment, we conclude that the SR protein hrp45 preferentially binds to sp gene transcripts in salivary gland cells. The preferential association of a specific SR protein with a particular type of gene transcripts reflects substrate-specific function(s) of an SR protein, in vivo. The possible roles that hrp45 might be playing in speedy and efficient processing of sp gene transcripts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alzhanova-Ericsson AT, Sun X, Visa N, Kiseleva E, Wurtz T, Daneholt B (1996) A protein of the SR family of splicing factors binds extensively to exonic Balbiani ring pre-mRNA and accompanies the RNA from the gene to the nuclear pore. Genes Dev 10:2881–2893

    PubMed  CAS  Google Scholar 

  • Baurén G, Jiang W, Bernholm K, Gu F, Wieslander L (1996) Demonstration of a dynamic transcription dependent organization of splicing factors in polytene nuclei. J Cell Biol 133:929–941

    Article  PubMed  Google Scholar 

  • Björk P, Wetterberg-Strandh I, Baurén G, Wieslander L (2006) Chironomus tentans-repressor splicing factor represses SR protein function locally on pre-mRNA exons and is displaced at correct splice sites. Mol Biol Cell 17:32–42

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois CF, Lejeune F, Stevenin J (2004) Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. Prog Nucleic Acid Res Mol Biol 78:37–88

    PubMed  CAS  Google Scholar 

  • Cáceres JF, Screaton GR, Krainer AR (1998) A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev 12:55–66

    PubMed  Google Scholar 

  • Case ST, Wieslander L (1992) Secretory proteins of Chironomus salivary glands: structural motifs and assembly characteristics of a novel biopolymer. In: Case ST (ed) Results and problems in cell differentiation, vol 19. Springer, Berlin Heidelberg New York, pp 187–226

    Google Scholar 

  • Champlin DT, Frasch M, Saumweber H, Lis JT (1991) Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev 5:1611–1621

    PubMed  CAS  Google Scholar 

  • Daneholt B (2001) Assembly and transport of a premessenger RNP particle. Proc Natl Acad Sci USA 98:7012–7017

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    Article  PubMed  CAS  Google Scholar 

  • Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcript. Trends Cell Biol 4:86–90

    Article  PubMed  CAS  Google Scholar 

  • Habets WJ, Hoet MH, de Jong BAW, van der Kemp A, van Venrooij WJ (1989) Mapping of B cell epitope on small nuclear ribonucleoproteins that react with human autoantibodies as well as with experimentally induced mouse monoclonal antibodies. J Immunol 143:2560–2566

    PubMed  CAS  Google Scholar 

  • Huang Y, Steitz JA (2001) Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 7:899–905

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Gattoni R, Stévenin J, Steitz JA (2003) SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell 11:837–843

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Zou JL, Manley JL, Baker BS (1992) The Drosophila RNA-binding protein RBP1 is localized to transcriptionally active sites of chromosomes and a functional similarity to human splicing factor ASF/SF2. Genes Dev 6:2569–2579

    PubMed  CAS  Google Scholar 

  • Kiseleva E, Wurtz T, Visa N, Daneholt B (1994) Assembly and disassembly of spliceosomes along a specific pre-messenger RNP fiber. EMBO J 13:6052–6061

    PubMed  CAS  Google Scholar 

  • Krecic AM, Swanson MS (1999) hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11:363–371

    Article  PubMed  CAS  Google Scholar 

  • Laemmli VK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nature Rev Mol Cell Biol 4:605–612

    Article  CAS  Google Scholar 

  • Lemaire R, Prasad J, Kashima T, Gustafson J, Manley JL, Lafyatis R (2002) Stability of a PKCI-1-related mRNA is controlled by the splicing factor ASF/SF2: a novel function for SR proteins. Genes Dev 16:594–607

    Article  PubMed  CAS  Google Scholar 

  • Lerner EA, Lerner MR, Janeway CA, Steitz JA (1981) Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci USA 78:2737–2741

    Article  PubMed  CAS  Google Scholar 

  • Lezzi M, Meyer B, Mähr R (1981) Heat shock phenomena in Chironomus tentans I. In vivo effects of heat, overheat, and quenching on salivary chromosome puffing. Chromosoma 83:327–339

    Article  PubMed  CAS  Google Scholar 

  • Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–378

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wang J, Manley JL (2005) Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev 19:2705–2714

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Xiao R, Sun P, Xu X, Fu XD (2005) Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation. Mol Cell 20:413–425

    Article  PubMed  CAS  Google Scholar 

  • Masuyama K, Taniguchi I, Kataoka N, Ohno M (2004) SR proteins preferentially associate with mRNAs in the nucleus and facilitate their export to the cytoplasm. Genes Cells 9:959–965

    Article  PubMed  CAS  Google Scholar 

  • Matunis EL, Matunis MJ, Dreyfuss G (1993) Association of individual hnRNP proteins and snRNPs with nascent transcripts. J Cell Biol 121:219–228

    Article  PubMed  CAS  Google Scholar 

  • Paulsson G, Lendahl U, Galli J, Ericsson C, Wieslander L (1990) The Balbiani ring 3 gene in Chironomus tentans has a diverged repetitive structure split by many introns. J Mol Biol 211:331–349

    Article  PubMed  CAS  Google Scholar 

  • Reed R, Magni K (2001) A new view of mRNA export separating: separating the wheat from the chaff. Nat Cell Biol 3:E201–204

    Article  PubMed  CAS  Google Scholar 

  • Ring HZ, Lis JT (1994) The SR protein B52/SRp55 is essential for Drosophila development. Mol Cell Biol 14:7499–7506

    PubMed  CAS  Google Scholar 

  • Roth MB, Murphy C, Gall JG (1990) A monoclonal antibody that recognizes a phosphorylated epitope stains lampbrush chromosome loops and small granules in the amphibian germinal vesicle. J Cell Biol 111:2217–2223

    Article  PubMed  CAS  Google Scholar 

  • Roth MB, Zahler AM, Stolk JA (1991) A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J Cell Biol 115:587–596

    Article  PubMed  CAS  Google Scholar 

  • Sanford JR, Longman D, Cáceres JF (2003) Multiple roles of the SR protein family in splicing regulation. Prog Mol Subcell Biol 31:33–58

    PubMed  CAS  Google Scholar 

  • Sanford JR, Gray NK, Beckmann K, Cáceres JF (2004) A novel role for shuttling SR proteins in mRNA translation. Genes Dev 18:755–768

    Article  PubMed  CAS  Google Scholar 

  • Sanford JR, Ellis J, Cáceres JF (2005) Multiple roles of arginine/serine splicing factors in RNA processing. Biochem Soc Trans 33:443–446

    Article  PubMed  CAS  Google Scholar 

  • Schuttle B, Reynders MMJ, van Assche CLMVJ, Hupperets PSGJ, Bosman FT, Blijham GH (1987) An improved method for the immunocytochemical detection of bromodeoxyuridine labeled nuclei using flow cytometry. Cytometry 8:372–376

    Article  Google Scholar 

  • Singh OP, Björkroth B, Masich S, Wieslander L, Daneholt B (1999) The intranuclear movement of Balbiani ring premessenger ribonucleoprotein particles. Exp Cell Res 251:135–146

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Alzhanova-Ericsson AT, Visa N, Aissouni Y, Zhao J, Daneholt B (1998) The hrp23 protein in the Balbiani ring pre-mRNA particles is released just before or at the binding the particles to the nuclear pore complex. J Cell Biol 142:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Visa N, Alzhanova-Ericsson AT, Sun X, Kiseleva E, Björkroth B, Wurtz T, Daneholt B (1996) A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84:253–264

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Takagaki Y, Manley JL (1996) Targeted disruption of an essential vertebrate gene. ASF/SF2 is required for cell viability. Genes Dev 10:2588–2599

    PubMed  CAS  Google Scholar 

  • Wetterberg I, Zhao J, Masich S, Wieslander L, Skoglund U (2001) In situ transcription and splicing in Balbiani ring 3 gene. EMBO J 20:2564–2574

    Article  PubMed  CAS  Google Scholar 

  • Wieslander L (1994) The Balbiani ring multigene family: coding repetitive sequences and evolution of a tissue specific cell function. Prog Nucleic Acid Res Mol Biol 48:275–313

    Article  PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    Article  PubMed  CAS  Google Scholar 

  • Wurtz T, Kiseleva E, Nacheva G, Alzhanova-Ericsson AT, Rosén A, Daneholt B (1996) Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol 16:1425–1435

    CAS  Google Scholar 

  • Wyss C (1982) Ecdysterone, insulin and fly extract needed for the proliferation of normal Drosophila cells in defined medium. Exp Cell Res 139:297–307

    Article  PubMed  CAS  Google Scholar 

  • Zahler AM, Neugebauer KM, Lane WS, Roth MB (1993) Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 230:219–222

    Article  Google Scholar 

  • Zhang Z, Krainer AR (2004) Involvement of SR proteins in mRNA surveillance. Mol Cell 19:597–607

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. A. Steitz for generously providing the antibody Y12; Lise-Marie Fjelkestam and Birgitta Björkroth for technical assistance; and Sergej Masich for helping with the computer. This study was supported by the Swedish Research Council. OPS was a recipient of a fellowship from the Wenner–Gren Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil Daneholt.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, O.P., Visa, N., Wieslander, L. et al. A specific SR protein binds preferentially to the secretory protein gene transcripts in salivary glands of Chironomus tentans . Chromosoma 115, 449–458 (2006). https://doi.org/10.1007/s00412-006-0073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0073-5

Keywords

Navigation