, Volume 115, Issue 6, pp 427–436 | Cite as

Comparative genomic analysis links karyotypic evolution with genomic evolution in the Indian Muntjac (Muntiacus muntjak vaginalis)

  • Qi Zhou
  • Ling Huang
  • Jianguo Zhang
  • Xiangyi Zhao
  • Qingpeng Zhang
  • Fei Song
  • Jianxiang Chi
  • Fengtang YangEmail author
  • Wen WangEmail author
Research Article


The karyotype of Indian muntjacs (Muntiacus muntjak vaginalis) has been greatly shaped by chromosomal fusion, which leads to its lowest diploid number among the extant known mammals. We present, here, comparative results based on draft sequences of 37 bacterial artificial clones (BAC) clones selected by chromosome painting for this special muntjac species. Sequence comparison on these BAC clones uncovered sequence syntenic relationships between the muntjac genome and those of other mammals. We found that the muntjac genome has peculiar features with respect to intron size and evolutionary rates of genes. Inspection of more than 80 pairs of orthologous introns from 15 genes reveals a significant reduction in intron size in the Indian muntjac compared to that of human, mouse, and dog. Evolutionary analysis using 19 genes indicates that the muntjac genes have evolved rapidly compared to other mammals. In addition, we identified and characterized sequence composition of the first BAC clone containing a chromosomal fusion site. Our results shed new light on the genome architecture of the Indian muntjac and suggest that chromosomal rearrangements have been accompanied by other salient genomic changes.


Genome Size Chromosome Painting Draft Sequence Intron Size Fusion Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Hongkun Zheng, Jun Li, Peixiang Ni, and Tao Feng in the Beijing Genomic Institute for assistance in preparing the perl scripts during the analysis. We also thank Huifeng Jiang, Yan Li, Yun Ding, Xin Li, and Haijing Yu in the Max-Planck Junior Research Group for incisive comments and discussions for preparing the manuscript and Xuebing Qi in the Comparative Genomics Group in Kunming Institute of Zoology for suggestions on performing PAML. This research was supported by key project grants of the Key Laboratory of Cellular and Molecular Evolution in Kunming Institute of Zoology and the National Natural Science Foundation of China (No. 30170506).

Supplementary material


  1. Aamato G, Egan, MG, Rabinowitz A (1999) A new species of muntjac, Muntiacus putaoensis (Artiodactyla: Cervidae) from northern Myanmar. Anim Conserv 2:1–7CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403PubMedCrossRefGoogle Scholar
  3. Aparicio S, Chapman J, Stupka E, Putnam N, Chia J-m, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MDS, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJK, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310PubMedCrossRefGoogle Scholar
  4. Birney E, Clamp M, Durbin R (2004) Genewise and GenomeWise. Genome Res 14:988–995PubMedCrossRefGoogle Scholar
  5. Blakesley RW, Hansen NF, Mullikin JC, Thomas PJ, McDowell JC, Maskeri B, Young AC, Benjamin B, Brooks SY, Coleman BI, Gupta J, Ho S-L, Karlins EM, Maduro QL, Stantripop S, Tsurgeon C, Vogt JL, Walker MA, Masiello CA, Guan X, Program NCS, Bouffard GG, Green ED (2004) An intermediate grade of finished genomic sequence suitable for comparative analyses. Genome Res 14:2235–2244PubMedCrossRefGoogle Scholar
  6. Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I, Pachter L, Rubin EM (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299:1391–1394PubMedCrossRefGoogle Scholar
  7. Bogenberger J, Schnell H, Fittler F (1982) Characterization of X-chromosome specific satellite DNA of Muntiacus muntjak vaginalis. Chromosoma 87:9–20PubMedCrossRefGoogle Scholar
  8. Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161:529–540PubMedCrossRefGoogle Scholar
  9. Chi JX, Huang L, Nie W, Wang J, Su B, Yang F (2005) Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114:167–172PubMedCrossRefGoogle Scholar
  10. Clark MS, Edwards YJK, Peterson D, Clifton SW, Thompson AJ, Sasaki M, Suzuki Y, Kikuchi K, Watabe S, Kawakami K, Sugano S, Elgar G, Johnson SL (2003) Fugu ESTs: New resources for transcription analysis and genome annotation. Genome Res 13:2747–2753PubMedCrossRefGoogle Scholar
  11. Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, Searle SMJ, Clamp M (2004) The Ensembl automatic gene annotation system. Genome Res 14:942–950PubMedCrossRefGoogle Scholar
  12. Dimitri P, Arca B, Berghella L, Mei E (1997) High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. PNAS 94:8052–8057PubMedCrossRefGoogle Scholar
  13. Elder FFB, Hsu TC (1988) Tandem fusions in the evolution of mammalian chromosomes. In: Sandberg AA (ed) The cytogenetics of mammalian autochromosomal rearrangements. Alan R Liss, New York, pp 481–506Google Scholar
  14. Evans TD, Timmins RJ (1994) News from Laos. Oryx 29:3–4Google Scholar
  15. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred.II. error probabilities. Genome Res 8:186–194PubMedGoogle Scholar
  16. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred.I. accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  17. Fontana F, Rubini M (1990) Chromosomal evolution in Cervidae. Biosystems 24:157–174PubMedCrossRefGoogle Scholar
  18. Fronicke L, Scherthan H (1997) Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Chromosom Res 5:254–261CrossRefGoogle Scholar
  19. Fronicke L, Chowdhary BP, Scherthan H (1997) Segmental homology among cattle (Bos taurus), Indian muntjac (Muntiacus muntjak vaginalis), and Chinese muntjac (M. reevesi) karyotypes. Cytogenet Cell Genet 77:223–227PubMedGoogle Scholar
  20. Giao PM, Tuoc D, Dung VV, Wikramanayake ED, Amato G, Arctander P, MacKinnon JR (1998) Description of Muntiacus truongsonensis, a new species of muntjac (Artiodactyla: Muntiacidae) from central Vietnam, and implications for conservation. Anim Conserv 1:61–68CrossRefGoogle Scholar
  21. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  22. Hartmann N, Scherthan H (2004) Characterization of ancestral chromosome fusion points in the Indian muntjac deer. Chromosoma 112:213–220PubMedCrossRefGoogle Scholar
  23. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  24. Johnston FP, Church RB, Lin CC (1982) Chromosome rearrangement between the Indian muntjac and Chinese muntjac is accompanied by a deletion of middle repetitive DNA. Can J Biochem 60:497–506PubMedCrossRefGoogle Scholar
  25. Jurka J (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16:418–420PubMedCrossRefGoogle Scholar
  26. Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB, Delcher AL, Pop M, Wang W, Fraser CM, Venter JC (2003) The dog genome: survey sequencing and comparative analysis. Science 301:1898–1903PubMedCrossRefGoogle Scholar
  27. Lee C, Sasi R, Lin CC (1993) Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Cytogenet Cell Genet 63:156–159PubMedCrossRefGoogle Scholar
  28. Lee C, Court DR, Cho C, Haslett JL, Lin CC (1997) Higher-order organization of subrepeats and the evolution of cervid satellite I DNA. J Mol Evol 44:327–335PubMedCrossRefGoogle Scholar
  29. Lim JK, Simmons MJ (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. Bioessays 16:269–275PubMedCrossRefGoogle Scholar
  30. Lin CC, Sasi R, Fan YS, Chen ZQ (1991) New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Chromosoma 101:19–24PubMedCrossRefGoogle Scholar
  31. Lin CC, Chiang PY, Hsieh LJ, Liao SJ, Chao MC, Li YC (2004) Cloning, characterization and physical mapping of three cervid satellite DNA families in the genome of the Formosan muntjac (Muntiacus reevesi micrurus). Cytogenet Genome Res 105:100–106PubMedCrossRefGoogle Scholar
  32. Ma SL, Wang YX, Xu L (1986) Taxonomic and phylogenetic studies on the genus Muntiacus. Acta Theriol Sinica 6:191–208Google Scholar
  33. Ma SL, Wang YX, Shi LM (1990) A new species of the genus Muntiacus from Yunnan, China. Zool Res 11:47–52Google Scholar
  34. Marais G, Nouvellet P, Keightley PD, Charlesworth B (2005) Intron size and exon evolution in Drosophila. Genetics 170:481–485PubMedCrossRefGoogle Scholar
  35. McLysaght A, Enright AJ, Skrabanek L, Wolfe KH (2000) Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17:22–36PubMedCrossRefGoogle Scholar
  36. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu L, Berman BP, Bettencourt BR, Celniker SE, de Grey AD, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol 3:RESEARCH0083Google Scholar
  37. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefGoogle Scholar
  38. Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639PubMedCrossRefGoogle Scholar
  39. O’Brien SJ, Menotti-Raymond M, Murphy WJ, Nash WG, Wienberg J, Stanyon R, Copeland NG, Jenkins NA, Womack JE, Marshall Graves JA (1999) The promise of comparative genomics in mammals. Science 286:458–481Google Scholar
  40. Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062PubMedCrossRefGoogle Scholar
  41. Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:37–45PubMedCrossRefGoogle Scholar
  42. Rat Genome Sequencing Project Consortium (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521CrossRefGoogle Scholar
  43. Shi LM, Pathak S (1981) Gametogenesis in a male Indian muntjac x Chinese muntjac hybrid. Cytogenet Cell Genet 30:152–156Google Scholar
  44. Solovyev VV, Salamov AA, Lawrence CB (1995) Identification of human gene structure using linear discriminate functions and dynamic programming. In: Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology 3:367–375Google Scholar
  45. Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternbe SM, Margulies EH, Blanchette M, Siepel AC, Thomas PJ, McDowell JC, Maskeri B, Hansen NF, Schwartz MS, Weber RJ, Kent WJ, Karolchik D, Bruen TC, Bevan R, Cutler DJ, Schwartz S, Elnitski L, Idol JR, Prasad AB, Lee-Lin SQ, Maduro VV, Summers TJ, Portnoy ME, Dietrich NL, Akhter N, Ayele K, Benjamin B, Cariaga K, Brinkley CP, Brooks SY, Granite S, Guan X, Gupta J, Haghighi P, Ho SL, Huang MC, Karlins E, Laric PL, Legaspi R, Lim MJ, Maduro QL, Masiello CA, Mastrian SD, McCloskey JC, Pearson R, Stantripop S, Tiongson EE, Tran JT, Tsurgeon C, Vogt JL, Walker MA, Wetherby KD, Wiggins LS, Young AC, Zhang LH, Osoegawa K, Zhu B, Zhao B, Shu CL, De Jong PJ, Lawrence CE, Smit AF, Chakravarti A, Haussler D, Green P, Miller W, Green ED (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424:788–793PubMedCrossRefGoogle Scholar
  46. The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  47. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  48. Wang W, Lan H (2000) Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. Mol Biol Evol 17:1326–1333PubMedGoogle Scholar
  49. Wendel JF, Cronn RC, Alvarez I, Liu B, Small RL, Senchina DS (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352PubMedGoogle Scholar
  50. Wernersson R, Schierup M, Jorgensen F, Gorodkin J, Panitz F, Staerfeldt H-H, Christensen O, Mailund T, Hornshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong G, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70PubMedCrossRefGoogle Scholar
  51. Wurster DH, Atkin NB (1972) Muntjac chromosomes: a new karyotype for Muntiacus muntjak. Experientia 28:972–973CrossRefGoogle Scholar
  52. Wurster DH, Benirschke K (1967) Chromosome studies in some deer, the springbok, and the pronghorn, with notes on placentation in deer. Cytologia 32:273–285PubMedGoogle Scholar
  53. Wurster DH, Benirschke K (1970) Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168:1364–1366PubMedCrossRefGoogle Scholar
  54. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  55. Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652PubMedGoogle Scholar
  56. Yang F, O’Brien PC, Wienberg J, Ferguson-Smith MA (1997a) A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Chromosom Res 5:109–117CrossRefGoogle Scholar
  57. Yang F, Muller S, Just R, Ferguson-Smith MA, Wienberg J (1997b) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39:396–401PubMedCrossRefGoogle Scholar
  58. Yu J, Yang Z, Kibukawa M, Paddock M, Passey DA, Wong GK-S (2002) Minimal introns are not “junk”. Genome Res 12:1185–1189PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Qi Zhou
    • 1
    • 3
  • Ling Huang
    • 2
    • 3
  • Jianguo Zhang
    • 4
  • Xiangyi Zhao
    • 1
  • Qingpeng Zhang
    • 4
  • Fei Song
    • 4
  • Jianxiang Chi
    • 2
    • 3
  • Fengtang Yang
    • 2
    • 5
    Email author
  • Wen Wang
    • 1
    Email author
  1. 1.CAS-Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingPeople’s Republic of China
  2. 2.Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingPeople’s Republic of China
  3. 3.Graduate School of Chinese Academy SciencesBeijingPeople’s Republic of China
  4. 4.Beijing Institute of GenomicsChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.Wellcome Trust Sanger InstituteCambridgeUK

Personalised recommendations