Skip to main content
Log in

An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Sex chromosomes in mammals are about 300 million years old and typically have a highly degenerated Y chromosome. The sex chromosomes in the dioecious plant Silene latifolia in contrast, represent an early stage of evolution in which functional X–Y gene pairs are still frequent. In this study, we characterize a novel tandem repeat called TRAYC, which has accumulated on the Y chromosome in S. latifolia. Its presence demonstrates that processes of satellite accumulation are at work even in this early stage of sex chromosome evolution. The presence of TRAYC in other species of the Elisanthe section suggests that this repeat had spread after the sex chromosomes evolved but before speciation within this section. TRAYC possesses a palindromic character and a strong potential to form secondary structures, which could play a role in satellite evolution. TRAYC accumulation is most prominent near the centromere of the Y chromosome. We propose a role for the centromere as a starting point for the cessation of recombination between the X and Y chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atanassov I, Delichere C, Filatov DA, Charlesworth D, Negrutiu I, Monéger F (2001) A putative monofunctional fructose-2,6-bisphosphate gene is located on X and Y sex chromosome in white campion (Silene latifolia). Mol Biol Evol 18:2162–2168

    PubMed  CAS  Google Scholar 

  • Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA 97:6634–6639

    Article  PubMed  CAS  Google Scholar 

  • Bechert T, Heck S, Fleig U, Diekmann S, Hegemann JH (1999) All 16 centromere DNAs from Saccharomyces cerevisiae show DNA curvature. Nucleic Acids Res 27:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Brodie R, Roper RL, Upton C (2004) JDotter: a Java interface to multiple doplots generated by dotter. Bioinformatics 20:279–281

    Article  PubMed  CAS  Google Scholar 

  • Buzek J, Koutnikova H, Houben A, Riha K, Janousek B, Siroky J, Grant S, Vyskot B (1997) Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res 5:57–65

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Delichere C, Veskens M, Hernould M, Barbacar N, Mouras A, Negrutiu I, Monéger F (1999) SlY1, the first active gene cloned from a plant Y chromosome encodes a WD-repeat protein. EMBO J 18:4169–4179

    Article  PubMed  CAS  Google Scholar 

  • Emerson JJ, Kaessmann H, Betran E, Long M (2004) Extensive gene traffic on the mammalian X chromosome. Science 303:537–540

    Article  PubMed  CAS  Google Scholar 

  • Ferrer N, Azorin F, Villasante A, Gutierrez C, Abad JP (1995) Centromeric dodeca-satellite DNA sequences form fold-back structures. J Mol Biol 245:8–21

    PubMed  CAS  Google Scholar 

  • Filatov DA (2005) Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics 170:975–979

    Article  PubMed  CAS  Google Scholar 

  • Guttman DS, Charlesworth D (1998) An X-linked gene with a degenerate Y-linked homologue in a dioecious plant. Nature 393:263–266

    Article  PubMed  CAS  Google Scholar 

  • Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296:57–63

    Article  PubMed  CAS  Google Scholar 

  • Haupt W, Fischer TC, Winderl S, Francsz P, Torres-Ruiz RA (2001) The CENTROMERE1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J 27:285–296

    Article  PubMed  CAS  Google Scholar 

  • Hladilova R, Siroky J, Vyskot B (1998) A cytospine technique for spreading plant metaphases suitable for immunofluorescence studies. Biotechnic Histochem 73:150–156

    Article  CAS  Google Scholar 

  • Hobza R, Lengerova M, Cernohorska H, Rubes J, Vyskot B (2004) FAST-FISH with laser beam microdissected DOP-PCR probe distinguishes the sex chromosomes of Silene latifolia. Chromosome Res 12:245–250

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  PubMed  CAS  Google Scholar 

  • Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, Tabata S, Fukui K, Matsunaga S, Vyskot B (2006) Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica (in press)

  • Khil PP, Oliver B, Camerini-Otero RD (2004) X for intersection: retrotransposition both on and off the X chromosome is more frequent. Trends Genet 21:3–7

    Article  CAS  Google Scholar 

  • Kubalakova M, Macas J, Dolezel J (1997) Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor Appl Genet 94:758–763

    Article  CAS  Google Scholar 

  • Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B (2004) Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet 108:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • Lisnic B, Svetec I-K, Saric H, Nikoloc I, Zgaga Z (2005) Palindrome content of the yeasts Saccharomyces cerevisiae genome. Curr Genet 47:289–297

    Article  PubMed  CAS  Google Scholar 

  • Liu ZY, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Moore RC, Kozyreva O, Lebel-Hardenack S, Siroky J, Hobza R, Vyskot B, Grant SR (2003) Genetic and functional analysis of DD44, a sex-linked gene from the dioecious plant Silene latifolia, provides clues to early events in sex chromosome evolution. Genetics 163:321–334

    PubMed  CAS  Google Scholar 

  • Navajas-Perez R, Schwarzacher T, de la Herran R, Ruiz Rejon C, Ruiz Rejon M, Garrido-Ramos MA (2006) The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368:61–71

    Article  PubMed  CAS  Google Scholar 

  • Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, Vyskot B, Mouchiroud D, Charlesworth D, Monéger F (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:47–56

    Article  CAS  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Heidelberg New York Berlin

    Google Scholar 

  • Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Wateston RH, Wilson RK, Page D (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108:266–270

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (2000) Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res 8:229–236

    Article  PubMed  CAS  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    Article  PubMed  CAS  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vagera J, Paulikova D, Dolezel J (1994) The development of male and female regenerants by in vitro androgenesis in dioecious plant Melandrium album. Ann Bot 73:455–459

    Article  Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438

    Article  PubMed  CAS  Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281

    Article  PubMed  CAS  Google Scholar 

  • Yang H, McLeese J, Weisbart M, Dionne J-L, Lemaire I, Aubin RA (1993) Simplified high throughput protocol for Northern hybridization. Nucleic Acids Res 21:3337–3338

    Article  PubMed  CAS  Google Scholar 

  • Zluvova J, Janousek B, Negrutiu I, Vyskot B (2005) Comparison of the X and Y chromosome organization in Silene latifolia. Genetics 170:1431–1434

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acids folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant Agency of the Czech Republic (grants 521/06/0056 to B.V., and 204/05/2097 to E.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Vyskot.

Additional information

Communicated by S. Henikoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobza, R., Lengerova, M., Svoboda, J. et al. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115, 376–382 (2006). https://doi.org/10.1007/s00412-006-0065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0065-5

Keywords

Navigation