Skip to main content
Log in

In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We sequenced a continuous 326-kb DNA stretch of a microscopically defined centromeric region of tomato chromosome 12. A total of 84% of the sequence (270 kb) was composed of a nested complex of repeat sequences including 27 retrotransposons, two transposable elements, three MITEs, two terminal repeat retrotransposons in miniature (TRIMs), ten unclassified repeats and three chloroplast DNA insertions. The retrotransposons were grouped into three families of Ty3-Gypsy type long terminal repeat (LTR) retrotransposons (PCRT1–PCRT3) and one LINE-like retrotransposon (PCRT4). High-resolution fluorescence in situ hybridization analyses on pachytene complements revealed that PCRT1a occurs on the pericentromere heterochromatin blocks. PCRT1 was the prevalent retrotransposon family occupying more than 60% of the 326-kb sequence with 19 members grouped into eight subfamilies (PCRT1a–PCRT1h) based on LTR sequence. The PCRT1a subfamily is a rapidly amplified element occupying tens of megabases. The other PCRT1 subfamilies (PCRT1b–PCRT1h) were highly degenerated and interrupted by insertions of other elements. The PCRT1 family shows identity with a previously identified tomato-specific repeat TGR2 and a CENP-B like sequence. A second previously described genomic repeat, TGR3, was identified as a part of the LTR sequence of an Athila-like PCRT2 element of which four copies were found in the 326-kb stretch. A large block of trinucleotide microsatellite (CAA)n occupies the centromere and large portions of the flanking pericentromere heterochromatin blocks of chromosome 12 and most of the other chromosomes. Five putative genes in the remaining 14% of the centromere region were identified, of which one is similar to a transcription regulator (ToCPL1) and a candidate jointless-2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A 95:13073–13078

    Article  CAS  PubMed  Google Scholar 

  • Barton DW (1950) Pachytene morphology of the tomato chromosome complement. Am J Bot 37:639–643

    Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    CAS  PubMed  Google Scholar 

  • Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol Gen Genet 250:39–49

    Article  CAS  PubMed  Google Scholar 

  • Budiman MA, Chang SB, Lee S, Yang TJ, Zhang HB, de Jong JH, Wing RA (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108:190–196

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672

    CAS  PubMed  Google Scholar 

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    CAS  PubMed  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  CAS  PubMed  Google Scholar 

  • Clarke L (1998) Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr Opin Genet Dev 8:212–218

    Article  CAS  PubMed  Google Scholar 

  • Copenhaver GP, Nckel K, Kuromori T, Benito M, Kaul S, Lin X, Bvan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  CAS  PubMed  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135–8140

    Article  CAS  PubMed  Google Scholar 

  • Entani T, Iwano M, Shiba H, Takayama S (1999) Centromeric localization of an S-RNase gene in Petunia hybrida Vilm. Theor Appl Genet 99:391–397

    Article  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  • Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X et al (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    CAS  PubMed  Google Scholar 

  • Frary A, Presting GG, Tanksley S (1996) Molecular mapping of the centromeres of tomato chromosomes 7 and 9. Mol Gen Genet 250:295–304

    Article  CAS  PubMed  Google Scholar 

  • Fukui KN, Suzuki G, Lagudah ES, Rahman S, Appels R, Yamamoto M, Mukai Y (2001) Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat. Plant Cell Physiol 42:189–196

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Lapitan N, Tanksley SD (1991) Macrostructure of the tomato telomeres. Plant Cell 3:87–94

    Google Scholar 

  • Ganal MW, Broun P, Tanksley SD (1992) Genetic mapping of tandemly repeated telomeric DNA sequences in tomato (Lycopersicon esculentum). Genomics 14:444–448

    CAS  PubMed  Google Scholar 

  • Gindullis F, Desel C, Galasso I, Schdidt T (2001) The large-scale organization of the centromeric region in Beta species. Genome Res 11:253–265

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  • Guy J, Hearn T, Crosier M, Mudge J, Viggiano L, Koczan D, Thiesen HJ, Bailey JA, Horvath JE, Eichler EE, Earthrowl ME, Deloukas P, French L, Rogers J, Benley D, Jackson MS (2003) Genomic sequence and transcriptional profile of the boundary between pericentromere satellites and genes on human chromosome arm 10p. Genome Res 13:159–172

    Article  CAS  PubMed  Google Scholar 

  • Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165

    Article  CAS  Google Scholar 

  • Henikoff S (2002) Near the edge of a chromosome’s black hole. Trends Genet 18:165–167

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Henning KA, Novotny EA, Compton ST, Guan XY, Liu PP, Ashlock MA (1999) Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci U S A 96:592–597

    Article  CAS  PubMed  Google Scholar 

  • Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Barb AW, Xiong L, Li F, McCully MG, Lee BH, Sokolchik I, Zhu J, Gong Z, Reddy M, Sharkhuu A, Manabe Y, Yokoi S, Zhu JK, Bressan RA, Hasegawa PM (2002) C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci U S A 99:10893–10898

    Article  CAS  PubMed  Google Scholar 

  • Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci U S A 97:9121–9126

    Article  CAS  PubMed  Google Scholar 

  • Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, Leunissen J, de Jong JH, Roe BA, Bisseling T (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    CAS  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290

    CAS  PubMed  Google Scholar 

  • Kurata N, Nonomura KI, Harushima Y (2002) Rice genome organization: the centromere and genome interactions. Ann Bot 90:427–435

    Google Scholar 

  • Lafarge S, Montané MH (2003) Caracterization of Arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1, strongly induced by gamma rays. Nucleic Acids Res 31:1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Birchler JA (2003) The role of DNA sequence in centromere formation. Genome Biol 4:214

    Article  PubMed  Google Scholar 

  • Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910–913

    Google Scholar 

  • Mao L, Begum D, Goff SA, Wing RA (2001) Sequence and analysis of the tomato JOINTLESS locus. Plant Physiol 126:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Song J, Stupar M, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003a) Molecular and cytological analysis of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    CAS  PubMed  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003b) Chromatin immunoprecipitation reveals that the 180 bp satellite repeat is the key functional DNA element of Arabidopsis thanlina centromeres. Genetics 163:1221–1225

    CAS  PubMed  Google Scholar 

  • Page BT, Wanous MK, Birchler JA (2001) Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159:291–302

    CAS  PubMed  Google Scholar 

  • Parsons JD (1995) Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci 11:615–619

    CAS  PubMed  Google Scholar 

  • Presting GG, Frary A, Pillen K, Tanksley SD (1996) Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet 251:526–531

    Article  CAS  PubMed  Google Scholar 

  • Rossberg M, Theres K, Acarkan A, Herrero R, Schmitt T, Schumacher K, Schmitz G, Schmidt R (2001) Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13:979–988

    Article  CAS  PubMed  Google Scholar 

  • Round EK, Flowers SK, Richards EJ (1997) Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 7:1045–1053

    CAS  PubMed  Google Scholar 

  • Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10:577–586

    CAS  PubMed  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100:8828–8833

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wahlstrom J, Karpen G (1997) Molecular structure of a functional Drosophila centromere. Cell 91:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194

    Article  CAS  PubMed  Google Scholar 

  • Thompson H, Schmidt R, Brandes A, Heslop-Harrison JS, Dean C (1996) A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet 253:247–252

    Article  CAS  PubMed  Google Scholar 

  • van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nature Rev Genet 2:196–206

    Google Scholar 

  • Ventura M, Archidiacono N, Rocchi M (2001) Centromere emergence in evolution. Genome Res 11:595–599

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D, Teti M, D’Addabbo P, Wandall A, Bjorck E, de Jong PJ, She X, Eichler EE, Archidiacono N, Rocchi M (2004) Recurrent sites for new centromere seeding. Genome Res 14:1696–1703

    Article  CAS  PubMed  Google Scholar 

  • Vosman B, Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome 40:25–33

    CAS  PubMed  Google Scholar 

  • Weide R, Hontelez J, van Kammen A, Koorneef M, Zabel P (1998) Paracentromeric sequences on tomato chromosome 6 show homology to human satellite III and to the mammalian CENP-B binding box. Mol Gen Genet 259:190–197

    Article  CAS  PubMed  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A 98:13778–13783

    Article  CAS  PubMed  Google Scholar 

  • Wong LH, Choo KHA (2001) Centromere on the move. Genome Res 11:513–516

    Article  CAS  PubMed  Google Scholar 

  • Yang TJ, Yu Y, Nah GJ, Atkins M, Lee S, Frisch DA, Wing RA (2003) Construction and utilities of 10 kb libraries for efficient clone-gap closure for rice genome sequencing. Theor Appl Genet 107:652–660

    Article  CAS  PubMed  Google Scholar 

  • Yang TJ, Yu Y, Frisch D, Lee S, Kim HR, Kwon SJ, Park BS, Wing RA (2004) Construction of various copy number plasmid vectors and their utility for genome sequencing. Genomics & Informatics 2:153–158

    Google Scholar 

  • Yang TJ, Yu Y, Lee S, Chang SB, Ahn SN, de Jong JH, Wing RA (2005) Toward finishing rice telomere gap: mapping and sequencing of rice subtelomere regions. Theor Appl Genet (in press)

    Google Scholar 

  • Yu Y, Rambo T, Currie J, Saski C, Kim HR, Collura K, Thompson S, Simmons J, Yang TJ, Park GN, Patel AJ et al (2003) In-depth view of structure, activity, and evolution of rice chromosome 10 (The Rice Chromosome 10 Sequencing Consortium). Science 300:1566–1569

    Article  PubMed  Google Scholar 

  • Zhang HB, Budiman MA, Wing RA (2000) Genetic mapping of jointless-2 to tomato chromosome 12 using RAPD and RFLP analysis. Theor Appl Genet 100:1183–1189

    Article  CAS  Google Scholar 

  • Zhang Y, Huang Y, Zhang L, Li Y, Lu T, Lu Y, Feng Q, Zhao Q, Cheng Z, Xue Y, Wing RA, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucleic Acids Res 32:2023–2030

    Article  CAS  PubMed  Google Scholar 

  • Zhong XB, de Jong JH, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    CAS  PubMed  Google Scholar 

  • Zhong XB, Fransz PF, Wennekes-Eden J, Ramanna MS, van Kammen A, Zabel P, de Jong JH (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13:507–517

    Article  CAS  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Plant Genome Grant # 0116076 to R.A.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod A. Wing.

Additional information

Communicated by P. Shaw

The sequence data from this study have been submitted to GenBank under accession no. AY850394

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, TJ., Lee, S., Chang, SB. et al. In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 114, 103–117 (2005). https://doi.org/10.1007/s00412-005-0342-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0342-8

Keywords

Navigation