Skip to main content
Log in

Organization of interphase chromatin

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The organization of interphase chromatin spans many topics, ranging in scale from the molecular level to the whole nucleus, and its study requires a concomitant range of experimental approaches. In this review, we examine these approaches, the results they have generated, and the interfaces between them. The greatest challenge appears to be the integration of information on whole nuclei obtained by light microscopy with data on nucleosome–nucleosome interactions and chromatin higher-order structures, obtained in vitro using biophysical characterization, atomic force microscopy, and electron microscopy. We consider strategies that may assist in the integration process, and we review emerging technologies that promise to reduce the “resolution gap.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amir RE, Van den Veyer IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CPG-binding protein 2. Nat Genet 23(2):127–128

    Google Scholar 

  • An W, Palhan VB, Karymov MA, Leuba SH, Roeder RG (2002) Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol Cell 9(4):811–821

    PubMed  CAS  Google Scholar 

  • Annunziato AT, Hansen JC (2000) Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr 9:37–61

    PubMed  CAS  Google Scholar 

  • Bash R, Hang H, Yodh J, Hager G, Lindsay SM, Lohr D (2003) Nucleosomal arrays can be salt-reconstituted on a single-copy MMTV promoter DNA template: their properties differ in several ways from those of comparable 5S concatameric arrays. Biochemistry 42:4682–4690

    Google Scholar 

  • Bastiaens PII, Hell SW (2004) Light microscopy on the move. J Struct Biol 147:1–2

    Google Scholar 

  • Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A 95:14173–14178

    PubMed  CAS  Google Scholar 

  • Belmont A (2001) Visualizing chromosome dynamics with GFP. Trends Cell Biol 11:250–257

    PubMed  CAS  Google Scholar 

  • Belmont A (2003) Dynamics of chromatin, proteins, and bodies within the cell nucleus. Curr Opin Cell Biol 15:304–310

    PubMed  CAS  Google Scholar 

  • Belmont AS, Bruce K (1994) Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J Cell Biol 127:287–302

    PubMed  CAS  Google Scholar 

  • Belmont AS, Braunfeld MB, Sedat JW, Agard DA (1989) Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98:129–143

    PubMed  CAS  Google Scholar 

  • Bernstein E, Allis D (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655

    PubMed  CAS  Google Scholar 

  • Brown CT, Rust AG, Clarke PJ, Pan Z, Schilstra MJ, De Buysscher T, Griffin G, Wold BJ, Cameron RA, Davidson EH, Bolouri H (2002) New computational approaches for analysis of cis-regulatory networks. Dev Biol 246:86–102

    PubMed  CAS  Google Scholar 

  • Bussiek M, Toth K, Brun N, Langowski J (2005) DNA-loop formation on nucleosomes shown by in situ scanning force microscopy of supercoiled DNA. J Mol Biol 345:695–706

    PubMed  CAS  Google Scholar 

  • Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM (2004) Long-range chromatin compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc Natl Acad Sci U S A 101:16495–16500

    PubMed  CAS  Google Scholar 

  • Caballero IM, Hendrich B (2005) MeCP2 in neurons: closing in on the causes of Rett syndrome. Hum Mol Genet 14:R19–R26

    PubMed  CAS  Google Scholar 

  • Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald P, Grewel SIS (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37:809–819

    PubMed  CAS  Google Scholar 

  • Carpenter AE, Memedula S, Plutz MJ, Belmont AS (2005) Common effects of acidic activators on large-scale chromatin structure and transcription. Mol Cell Biol 25:958–968

    PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Does looping and clustering in the nucleus regulate gene expression? Curr Opin Cell Biol 16:256–262

    PubMed  CAS  Google Scholar 

  • Claverie J-M (2005) Fewer genes, more noncoding RNA. Science 309:1529–1530

    PubMed  CAS  Google Scholar 

  • Cremer T, Kupper K, Dietzel S, Fakan S (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96:555–567

    PubMed  CAS  Google Scholar 

  • Daban J-R (2000) Physical constraints in the condensation of eukaryotic chromosomes. Local concentration of DNA versus linear packing ratio in higher order chromatin structures. Biochemistry 39:3861–3866

    PubMed  CAS  Google Scholar 

  • Daban J-R (2003) High concentration of DNA in condensed chromatin. Biochem Cell Biol 81:91–99

    PubMed  CAS  Google Scholar 

  • Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) Differential large-scale chromatin compaction and intranuclear positioning of transcribed versus non-transcribed transgene arrays containing beta-globin regulatory sequences. J Cell Sci 117(19):4603–4614

    PubMed  CAS  Google Scholar 

  • Dillon N (2004) Heterochromatin structure and function. Biol Cell 96:631–637

    PubMed  CAS  Google Scholar 

  • Dorigo B, Schlach T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 terminal tail. J Mol Biol 327:85–96

    PubMed  CAS  Google Scholar 

  • Dorigo B, Schlach T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573

    PubMed  CAS  Google Scholar 

  • Ducker CE, Simpson RT (2000) The organized chromatin of the repressed yeast a-cell specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome. EMBO J 19:400–409

    PubMed  CAS  Google Scholar 

  • Dundr M, McNally JG, Cohen J, Misteli T (2002) Quantitation of GFP-fusion proteins in single living cells. J Struct Biol 140:92–99

    PubMed  CAS  Google Scholar 

  • Egner A, Verrier S, Goroshkov A, Soling H, Hell SW (2004) 4Pi microscopy of the Golgi apparatus in live mammalian cells. J Struct Biol 147:70–76

    PubMed  CAS  Google Scholar 

  • Fakan S (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem Cell Biol 122:83–93

    PubMed  CAS  Google Scholar 

  • Filipowicz W, Jaskiewicz L, Kolb FA, Pialli RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15(3):331–341

    PubMed  CAS  Google Scholar 

  • Finch JT, Klug A (1976) A solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A 73:1897–1901

    PubMed  CAS  Google Scholar 

  • Fiori CE, Leapman RD, Swyt CR, Andrews SB (1988) Quantitative X-ray mapping of biological cryosections. Ultramicroscopy 24:237–249

    PubMed  CAS  Google Scholar 

  • Fletcher TM, Hansen JC (1996) The nucleosomal array: structure/function relationships. Crit Rev Eukaryot Gene Expr 6:149–188

    PubMed  CAS  Google Scholar 

  • Fletcher TM, Ryu B-W, Baumann CT, Warren BS, Fragoso G, John S, Hager G (2000) Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol Cell Biol 20:6466–6475

    PubMed  CAS  Google Scholar 

  • Fragoso G, John S, Roberts MS, Hager GL (1995) Nucleosome positioning on the MMTV LTR results from the frequency biased occupancy of multiple frames. Genes Dev 9:1933–1947

    PubMed  CAS  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306:1574–1577

    PubMed  CAS  Google Scholar 

  • Frangakis AS, Hegerl R (2001) Noise reduction in tomographic reconstructions using nonlinear anisotropic diffusion. J Struct Biol 135:239–250

    PubMed  CAS  Google Scholar 

  • Frangakis AS, Hegerl U (2002) Segmentation of two- and three-dimensional data from electron microscopy using eigenvector analysis. J Struct Biol 138:105–113

    PubMed  Google Scholar 

  • Frangakis AS, Bohm J, Forster F, Nickell S, Nicastro D, Typke D, Hegerl R, Baumeister W (2002) Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc Natl Acad Sci U S A 99(22):14153–14158

    PubMed  CAS  Google Scholar 

  • Garcia-Ramirez M, Rocchini C, Ausio J (1995) Modulation of chromatin folding by histone acetylation. J Biol Chem 270:17923–17928

    PubMed  CAS  Google Scholar 

  • Garnini Y, Vermolen BJ, Yound IT (2005) From micro to nano: recent advances in high resolution microscopy. Curr Opin Biotechnol 16:3–12

    Google Scholar 

  • Georgel PT, Palacios DeBeer MA, Pietz G, Fox CA, Hansen JC (2001) Sir3-dependent assembly of supramolecular chromatin structures in vitro. Proc Natl Acad Sci U S A 98:8584–8599

    PubMed  CAS  Google Scholar 

  • Georgel PT, Fletcher TM, Hager G, Hansen JC (2003a) Formation of higher order secondary and tertiary chromatin structures by mouse mammary tumor virus promoters. Genes Dev 17:1617–1629

    PubMed  CAS  Google Scholar 

  • Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade P, Hansen JC (2003b) Chromatin compaction by human MeCP2. Assembly of novel chromatin secondary structures in the absence of DNA methylation

  • Ghirlando R, Litt MD, Prioleau M-N, Recillas-Targa F, Felsenfeld D (2003) Physical properties of a condensed chromatin fragment. J Mol Biol 336:597–605

    Google Scholar 

  • Gilbert N, Allan J (2001) Distinctive higher order chromatin structure at mammalian centromeres. Proc Natl Acad Sci U S A 98:11949–11954

    PubMed  CAS  Google Scholar 

  • Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cyt 242:283–336

    CAS  Google Scholar 

  • Gordon F, Luger K, Hansen JC (2005) The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J Biol Chem 280(40):33701–33706

    PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfiel S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    PubMed  CAS  Google Scholar 

  • Grigoryev SA, Bednar J, Woodcock CL (1999) MENT, a heterochromatin protein that mediates higher order chromatin folding, is a new Serpin family member. J Biol Chem 274:5626–5636

    PubMed  CAS  Google Scholar 

  • Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–13086

    PubMed  CAS  Google Scholar 

  • Hager GL, Elbi C, Becker M (2002) Protein dynamics in the nuclear compartment. Curr Opin Genet Dev 12:137–141

    PubMed  CAS  Google Scholar 

  • Hancock R (2004a) A role for molecular crowding effects in the assembly and function of compartments in the nucleus. J Struct Biol 146:281–290

    PubMed  CAS  Google Scholar 

  • Hancock R (2004b) Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model. Biol Cell 96:595–601

    PubMed  CAS  Google Scholar 

  • Hansen JC (2005) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 31:361–392

    Google Scholar 

  • Horike S, Cai S, Miyano M, Cheng J-F, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    PubMed  CAS  Google Scholar 

  • Horowitz RA, Woodcock CL (1990) Low temperature methods for nuclei and chromatin. J Microsc 157:205–224

    PubMed  CAS  Google Scholar 

  • Horowitz RA, Agard DA, Sedat JM, Woodcock CL (1994) The three dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zigzag nucleosomal ribbon. J Cell Biol 125:1–10

    PubMed  CAS  Google Scholar 

  • Horowitz RA, Koster AB, Walz J, Woodcock CL (1997) Automated electron microscope tomography of frozen hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers. J Struct Biol 120:353–362

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  CAS  Google Scholar 

  • Kato H, Goto DK, Martienssen RA, Urano T, Furukawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309:467–469

    PubMed  CAS  Google Scholar 

  • Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green, RD, Ren B (2005) A high resolution map of active promoters in the human genome. Nature 436:876–880

    PubMed  CAS  Google Scholar 

  • Leapman RD, Ornberg RL (1988) Quantitative electron energy loss spectroscopy in biology. Ultramicroscopy 24:251–268

    PubMed  CAS  Google Scholar 

  • Li G, Widom J (2004) Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11:763–769

    PubMed  CAS  Google Scholar 

  • Li G, Bustamante C, Widom J (2004) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12:46–53

    PubMed  Google Scholar 

  • Ling X, Harkness TA, Schultz MC, Fisherdams G, Grunstein M (1996) Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro. Redundant and interchangeable functions in assembly but not gene regulation. Genes Dev 10:686–699

    PubMed  CAS  Google Scholar 

  • Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G (2001) Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293(5539):2453–2455

    PubMed  CAS  Google Scholar 

  • Liu Z, Garrard WT (2005) Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol Cell Biol 25(8):3220–3231

    PubMed  CAS  Google Scholar 

  • Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence directed nucleosome positioning. J Mol Biol 276:19–42

    PubMed  CAS  Google Scholar 

  • Luger K, Hansen JC (2005) Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 15:188–196

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    PubMed  CAS  Google Scholar 

  • Lusser A, Kadonaga JT (2004) Strategies for the reconstitution of chromatin. Nat Methods 1:19–26

    PubMed  CAS  Google Scholar 

  • Martin S, Failla AV, Spori U, Cremer C, Pombo A (2004) Measuring the size of biological nanostructures with spatially modulated illumination microscopy. Mol Biol Cell 15:2449–2455

    PubMed  CAS  Google Scholar 

  • McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5:1395–1402

    PubMed  CAS  Google Scholar 

  • McNally J, Muller WG, Walker D, Wolford R, Hager G (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265

    PubMed  CAS  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biological reactions in physiological media. J Biol Chem 276:10577–10580

    PubMed  CAS  Google Scholar 

  • Misteli T (2001) The concept of self-organization in cellular architecture. J Cell Biol 155:181–185

    PubMed  CAS  Google Scholar 

  • Misteli T, Gunjan A, Hock R, Bustin M, Brown DT (2000). Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–881

    PubMed  CAS  Google Scholar 

  • Muller WG, Rieder D, Kreth G, Cremer C, Trajanoski Z, McNally JG (2004) Generic features of tertiary chromatin structure as detected in natural chromosomes. Mol Cell Biol 24:9359–9370

    PubMed  Google Scholar 

  • Nan X, Bird A (2001) The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome. Brain Dev 23(Suppl 1):S32–S37

    PubMed  Google Scholar 

  • Nikitina T, Woodcock CL (2004) Closed chromatin loops at the ends of telomeres. J Cell Biol 166:161–165

    PubMed  CAS  Google Scholar 

  • Nikova DN, Pope LH, Bennick ML, van Leijenhorst-Groener KA, van der Werf K, Greve J (2004) Unexpected binding motifs for subnucleosomal particles revealed by atomic force microscopy. Biophys J 87:4135–4145

    PubMed  CAS  Google Scholar 

  • O'Brien TP, Bult CJ, Cremer C, Grunze M, Knowles BB, Langowski J, Pederson T, Politz JC, Pombo A, Schmahl G, Spatz JP, van Driel R (2003) Genome function and nuclear architecture: from gene expression to nanoscience. Genome Res 13:1029–1041

    PubMed  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian nucleus. Nature 404:604–609

    PubMed  CAS  Google Scholar 

  • Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T (2004) Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24:6393–6402

    PubMed  CAS  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4):517–527

    PubMed  CAS  Google Scholar 

  • Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    PubMed  CAS  Google Scholar 

  • Ris H (1956) A study of chromosomes with the electron microscope. J Biophys Biochem Cytol 2:385–392

    Article  PubMed  CAS  Google Scholar 

  • Ris H, Korenberg J (1979) Chromosome structure and levels of organization. In: Prescott DM, Goldstein L (eds) Cell biology: a comprehensive treatise, vol 2. The structure and replication of genetic material. Academic, New York, pp 267–361

    Google Scholar 

  • Roh TY, Cuddapah S, Zhao K (2005) Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 19(5):542–552

    PubMed  CAS  Google Scholar 

  • Roix JJ, McQueen P, Munson PJ, Prada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphoma. Nat Genet 34:287–291

    PubMed  CAS  Google Scholar 

  • Schlach T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    Google Scholar 

  • Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O'Neill LP, Turner BM, Delrow J, Bell SP, Groudine M (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18:1263–1271

    PubMed  Google Scholar 

  • Schuster T, Han M, Grunstain M (1986) Yeast H2A and H2B amino termini have interchangeable functions. Cell 45:445–451

    PubMed  CAS  Google Scholar 

  • Simpson RT, Thoma F, Brubaker J (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42:799–808

    PubMed  CAS  Google Scholar 

  • Solis FJ, Bash R, Yodh J, Lindsay SM, Lohr D (2004) A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays. Biophys J 87:3372–3387

    PubMed  CAS  Google Scholar 

  • Spector DL (2003) The dynamics of chromosome organization and gene regulation. Annu Rev Biochem 72:573–608

    PubMed  CAS  Google Scholar 

  • Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435:637–645

    PubMed  CAS  Google Scholar 

  • Springhetti EM, Istomina NE, Whisstock JC, Nicotine T, Woodcock CL (2003) Role of the M-loop and reactive center loop domains in the folding and bridging of nucleosome arrays by MENT. J Biol Chem 278:43384–43393

    PubMed  CAS  Google Scholar 

  • Strick R, Strissel PL, Gavrilov K, Levi-Setti R (2001) Cation–chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J Cell Biol 2001 155:899–910

    PubMed  CAS  Google Scholar 

  • Sun SQ, Shi SL, Hunt JA, Leapman RD (1995) Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy. J Microsc 177:18–30

    PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83(2 Pt 1):403–427

    PubMed  CAS  Google Scholar 

  • Tolhuis B, Palstra R-J, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active β-globin locus. Mol Cell 10:1453–1465

    PubMed  CAS  Google Scholar 

  • Tomschik M, Zheng H, van Holde K, Zlatanova J, Leuba SH (2005) Fast, long-range, reversible fluctuations in nucleosomes revealed by single-pair fluorescence energy transfer. Proc Natl Acad Sci U S A 102:3278–3283

    PubMed  CAS  Google Scholar 

  • Toth K, Knoch T, Wachsmuth M, Frank-Stohr M, Stohr M, Bacher C, Muller G, Rippe K (2004) Trichostatin-A induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci 117:4277–4287

    PubMed  CAS  Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629–4638

    PubMed  CAS  Google Scholar 

  • Tudor M, Akbarian S, Chen RZ, Jaenisch R (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A 99(24):15536–15541

    PubMed  CAS  Google Scholar 

  • Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17:453–462

    PubMed  CAS  Google Scholar 

  • van Driel R, Fransz PF, Verschure PJ (2003) The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 116:4067–4075

    PubMed  Google Scholar 

  • van Huynh AT, Robinson PJJ, Rhodes D (2004) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957–968

    PubMed  Google Scholar 

  • van Steensel B (2005) Mapping of genetic and epigenetic networks using microarrays. Nat Genet 37:18–24

    Google Scholar 

  • Verschure PJ (2004) Positioning the genome in the nucleus. Biol Cell 96:569–577

    PubMed  CAS  Google Scholar 

  • Wade PA (2001) Methyl CpG-binding proteins and transcriptional repression. BioEssays 23:1131–1137

    PubMed  CAS  Google Scholar 

  • Wang H, Bash R, Yodh JG, Hager G, Lindsay SM, Lohr D (2004) Using atomic force microscopy to study nucleosome remodeling on individual nucleosomal arrays in situ. Biophys J 87:1964–1971

    PubMed  CAS  Google Scholar 

  • Wang H, Bash R, Yodh JG, Lindsay SM, Lohr D (2005) Solution studies of human Swi–Snf and its interactions with MMTV DNA and chromatin. Biophys J. DOI 10.1529/biophysj.105.065391

  • Wassenegger (2005) The role of the RNAi machinery in heterochromatin formation. Cell 122(1):13–16

    PubMed  CAS  Google Scholar 

  • Weidemann T, Wachsmuth M, Knoch TA, Muller G, Waldeck W, Langowski J (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol 334:229–240

    PubMed  CAS  Google Scholar 

  • Widom J (1986) Physicochemical studies on the folding of the 100A nucleosomal filament into the 300A filament. Cation dependence. J Mol Biol 190:411–424

    PubMed  CAS  Google Scholar 

  • Williams SP, Athey BD, Muglia LJ, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left handed helices with diameter and mass per length that depend on linker length. Biophys J 49:233–248

    Article  PubMed  CAS  Google Scholar 

  • Wiren M, Silverstein RA, Sinha I, Walfridsson J, Lee HM, Laurenson P, Pillus L, Robyr D, Grunstein M, Ewali K (2005) Genomewide analysis of nucleosome density, histone acetylation, and HDAC function in fission yeast. EMBO J 24(16):2906–2918

    PubMed  CAS  Google Scholar 

  • Woodcock CL (1994) Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length. J Cell Biol 125:11–19

    PubMed  CAS  Google Scholar 

  • Woodcock CL (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res (in press)

  • Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11:130–135

    PubMed  CAS  Google Scholar 

  • Woodcock CL, Horowitz RA (1995) Chromatin organization re-viewed. Trends Cell Biol 5:272–277

    PubMed  CAS  Google Scholar 

  • Woodcock CL, Frado L-LY, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42–52

    PubMed  CAS  Google Scholar 

  • Yodh JG, Lyubchenko YL, Shyakhtenko LS, Woodbury N, Lohr D (1999) Evidence for nonrandom behavior in 208-12 subsaturated nucleosomal array populations analyzed by AFM. Biochemistry 38:15756–15763

    PubMed  CAS  Google Scholar 

  • Yodh JG, Woodbury N, Luda S, Shyakhtenko LS, Lyubchenko YL, Lohr D (2002) Mapping nucleosome locations on the 208-12 by AFM provides clear evidence for cooperativity in array occupation. Biochemistry 41:3565–3574

    PubMed  CAS  Google Scholar 

  • Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    PubMed  CAS  Google Scholar 

  • Zheng C, Lu X, Hansen JC, Hayes JJ (2005) Salt-dependent intra- and inter-nucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem 280:33552–33557

    PubMed  CAS  Google Scholar 

  • Zlatanova J, Leuba SH (2003) Chromatin fibers, one-at-a-time. J Mol Biol 331(1):1–19

    PubMed  CAS  Google Scholar 

  • Zlatanova J, Leuba SL, van Holde K (1998) Chromatin fiber structure: morphology, molecular determinants, structural transitions. Biophys J 74:2554–2566

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank colleagues who shared recent unpublished data. Supported in part by National Institutes of Health (NIH) GM070897 to C.L.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Woodcock.

Additional information

Communicated by E.A. Nigg

This article is dedicated to the memory of Hans Ris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horowitz-Scherer, R.A., Woodcock, C.L. Organization of interphase chromatin. Chromosoma 115, 1–14 (2006). https://doi.org/10.1007/s00412-005-0035-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0035-3

Keywords

Navigation