Skip to main content
Log in

Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Most eukaryotic centromeres contain long arrays of tandem repeats, with unit lengths of 150–300 bp. We searched for such repeats in the functional centromeres of the model legume Medicago truncatula (Medicago) accession Jemalong A17. To this end three repeats, MtR1, MtR2 and MtR3, were identified in 20 Mb of a low-pass, whole genome sequencing data set generated by a random shotgun approach. The nucleotide sequence composition, genomic organization and abundance of these repeats were characterized. Fluorescent in situ hybridization of these repeats on chromosomes at meiosis I showed that only the MtR3 repeat, encompassing stretches of 450 kb to more than 1.0 Mb, is located in the functional portion of all eight centromeres. MtR1 and MtR2 occupy distinct regions in pericentromeric heterochromatin. We also studied the presence and distribution of MtRs in Medicago accession R108-1, a genotype with a genome that is 20% smaller than that of Jemalong A17. We determined that while MtR3 is also centromeric on all pachytene bivalents in R108-1, MtR1 and MtR2 are not present in the R108 genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a–i
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal K, Gupta PK (1983) Cytological studies in the genus Medicago Linn. Cytologia 48:781–793

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Blondon F, Marie D, Brown S, Kondorosi A (1994) Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37:264–275

    CAS  Google Scholar 

  • Bodenteich A, Chissoe S, Wang YF, Roe BA (1993) Shotgun cloning as the strategy of choice to generate templates for high-throughput dideoxynucleotide sequencing. In: Venter JC (ed) Automated DNA sequencing and analysis techniques. Academic, London, pp 42–50

    Google Scholar 

  • Campell BR, Soung Y, Posch TE, Cullis CA, Town CD (1992). Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112:225–228

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Donga F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  CAS  PubMed  Google Scholar 

  • Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian D, Clifton SW, Crabtree J, Freeman A, Iyer K, Jian L, Ma Y, McLaury HJ, Pan HQ, Sharon O, Toth S, Wong Z, Zhang G, Heisterkamp N, Groffen J, Roe BA (1995) Sequence and analysis of the human ABL gene, BCR gene and regions involved in the Philadelphia chromosomal translocation. Genomics 27:67–82

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis THN, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA (in press)

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14:200–204

    Google Scholar 

  • Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  • Galasso I, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L.) Walp: the physical organization and characterization of 18S–5.8S–25S rRNA genes, 5S rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 928:935

    Google Scholar 

  • Gerbach M, Kevel Z, Siljak-Yakovlev S, Kondorosi E, Kondorosi A, Trinh TH (1999) FISH chromosome mapping allowing karyotype analysis in Medicago truncatula Jemalong J5 and R-108-1. Mol Plant Microbe Interact 12:947–950

    Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  • Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:195–205

    Article  CAS  PubMed  Google Scholar 

  • Hall AE, Keith KC, Hall SE, Copenhaver GP, Preuss D (2004) The rapidly evolving field of plant centromeres. Curr Opin Plant Biol 7:108–114

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere complex: Stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–635

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal region of Arabidopsis species. Chromosome Res 11:241–253

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315

    CAS  Google Scholar 

  • Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Birchler J, Parrott W, Dawe R (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Kaszas E, Birchler JA (1998) Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics 150:1683–1692

    CAS  PubMed  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim D-J, Cook D, Huguet T, de Jong H, Fransz P, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Theuri J, Birchler JA (2004) What’s in a centromere? Genome Biol 5:239

    Article  PubMed  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1:159–166

    Article  Google Scholar 

  • Martinez-Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423

    CAS  Google Scholar 

  • Morgante M, Jurman I, Zhu T, Keim P, Rafalski JA (1997) The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity. Chromosome Res 5:363–373

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263:388–394

    Article  CAS  PubMed  Google Scholar 

  • Pan HQ, Wang YP, Chissoe SL, Bodenteich A, Wang Z, Iyer K, Clifton SW, Crabtree JS, Roe BA (1994) The complete nucleotide sequence of the SacBII domain of the P1 pAD10-SacBII cloning vector and three cosmid cloning vectors: pTCF, svPHEP and LAWRIST16. GATA 11:181–186

    CAS  Google Scholar 

  • Parsons JD (1995) Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci 11:615–619

    CAS  PubMed  Google Scholar 

  • Rogers SO, Bendish AJ (1988) Extraction of DNA from plant tissue. In: Gelvin SB, Schilperoort RA (eds) Plant molecular manual. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  • Ross K, Fransz PF, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4:507–516

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vols 1–3. Cold Spring Harbor Laboratory, NY

    Google Scholar 

  • Sun X, Wahlstrom J, Karpen GH (1997) Molecular structure of a functional Drosophila centromere. Cell 92:1007–1019

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of a satellite DNA at the centromeres of human chromosomes: high frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86:9394–9398

    CAS  PubMed  Google Scholar 

  • Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M, Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R, Kobayashi H, Ito K, Karasawa W, Yamamoto M, Saji S, Katagiri S, Kanamori H, Namiki N, Katayose Y, Matsumoto T, Sasaki T (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the FP6 EU project Grain Legumes (FOOD-CT-2004-506223) (to R.G. and T.B.) and CW (NWO) (to T.B.), from the US National Science Foundation (DBI-0110206, to D.R.C. and D.J.K.), and from the Samuel Roberts Noble Foundation (to B.A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ton Bisseling.

Additional information

Communicated by P. Shaw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulikova, O., Geurts, R., Lamine, M. et al. Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113, 276–283 (2004). https://doi.org/10.1007/s00412-004-0315-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0315-3

Keywords

Navigation