Skip to main content

Advertisement

Log in

Conspicuous accumulation of transcription elongation repressor hrp130/CA150 on the intron-rich Balbiani ring 3 gene

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosomal puffs on the polytene chromosomes in the dipteran Chironomus tentans offer the possibility of comparing the appearance of RNA-binding proteins at different transcription sites. We raised a monoclonal antibody that recognized a 130 kDa protein, designated hrp130. Immunocytological analysis of isolated chromosomes showed that hrp130 is heavily accumulated in a specific puff, called Balbiani ring 3; only occasionally is hrp130 abundant in one or two additional puffs on other chromosomes. The immunolabeling was sensitive to RNase treatment, suggesting that hrp130 is associated with nascent ribonucleoproteins. As shown by immunoelectron microscopy hrp130 is distributed along the active BR3 genes. The full sequence of hrp130 was determined by cDNA cloning. The protein comprises 1028 amino acids and contains three WW domains in the N-terminal half and six FF domains in the C-terminal half of the molecule. The protein is conserved from Caenorhabditis elegans to mammals; the human homolog is known as the transcription elongation repressor CA150. We propose that the abundance of hrp130/CA150 in BR3 is connected with the exceptionally high level of splicing in this locus and that hrp130/CA150 adjusts the transcription rate to the numerous splicing events taking place along the gene to ensure proper splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–d
Fig. 4a–d
Fig. 5
Fig. 6
Fig. 7a,b

Similar content being viewed by others

References

  • Abovich N, Rosbash M (1997) Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89:403–412

    Article  CAS  PubMed  Google Scholar 

  • Aebi M, Weissman C (1987) Precision and orderliness in splicing. Trends Genet 3:102–107

    Google Scholar 

  • Allen M, Friedler A, Schon O, Bycroft M (2002) The structure of an FF domain from human HYPA/FB11. J Mol Biol 323:411–416

    Article  CAS  PubMed  Google Scholar 

  • Alzhanova-Ericsson AT, Sun X, Visa N, Kiseleva E, Wurtz T, Daneholt B (1996) A protein of the SR family of splicing factors binds extensively to exonic Balbiani ring pre-mRNA and accompanies the RNA from the gene to the nuclear pore. Genes Dev 10:2881–2893

    CAS  PubMed  Google Scholar 

  • Baurén G, Belikov S, Wieslander L (1998) Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron. Genes Dev 12:2759–2769

    PubMed  Google Scholar 

  • Bedford MT, Leder P (1999) The FF domain: a novel motif that often accompanies WW domains. Trends Biochem Sci 24:264–265

    Article  CAS  PubMed  Google Scholar 

  • Beford MT, Chan DC, Leder P (1997) FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J 16:2376–2383

    Article  PubMed  Google Scholar 

  • Bentley D (1999) Coupling RNA polymerase II transcription with pre-mRNA processing. Curr Opin Cell Biol 11:347–351

    Article  CAS  PubMed  Google Scholar 

  • Björkroth B, Ericsson C, Lamb MM, Daneholt B (1988) Structure of the chromatin axis during transcription. Chromosoma 96:333–340

    Google Scholar 

  • Bohne J, Cole SE, Sune C, Lindman BR, Ko VD, Vogt TF, Garcia-Blanco MA (2000) Expression analysis and mapping of the mouse and human transcriptional regulator CA150. Mamm Genome 11:930–933

    Article  CAS  PubMed  Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621

    CAS  PubMed  Google Scholar 

  • Carty SM, Goldstrohm AC, Sune C, Garcia-Blanco MA, Greenleaf A (2000) Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc Natl Acad Sci USA 97:9015–9020

    Article  Google Scholar 

  • Chen HI, Sudol M (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci USA 92:7819–7823

    CAS  PubMed  Google Scholar 

  • Daneholt B (2001) Assembly and transport of a premessenger RNP particle. Proc Natl Acad Sci USA 98:7012–7017

    Article  Google Scholar 

  • Daneholt B, Edström J-E (1967) The content of deoxyribonucleic acid in individual polytene chromosomes of Chironomus tentans. Cytogenetics 6:350–356

    CAS  PubMed  Google Scholar 

  • Dignam SS, Case ST (1990) Balbiani ring 3 in Chironomus tentans encodes a 185-kDa secretory protein which is synthesized throughout the fourth larval instar. Gene 88:133–140

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321

    Article  CAS  PubMed  Google Scholar 

  • Ermekova KS, Zambrano N, Linn H, Minopoli G, Gertler F, Russo T, Sudol M (1998) The WW domain of neural protein FE65 interacts with proline-rich motifs in mena, the mammalian homolog of Drosophlia enabled. J Biol Chem 272:32869–32877

    Google Scholar 

  • Fakan S (1994) Perichromatin fibrils are in situ forms of nascent transcript. Trends Cell Biol 4:86–90

    Article  CAS  PubMed  Google Scholar 

  • Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA (2001) The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 21:7617–7628

    Article  CAS  PubMed  Google Scholar 

  • Grasso C, Lee C (2004) Combining partial order alignment and progressive multiple sequence alignment increases alignment speed and scalability to very large alignment problems. Bioinformatics 20:1546–1556

    Article  CAS  PubMed  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Hirose Y, Manley JL (2000) RNA polymerase II and the integration of nuclear events. Genes Dev 14:1415–1429

    CAS  PubMed  Google Scholar 

  • Kabisch R, Bautz EKF (1983) Differential distribution of RNA polymerase B and nonhistone chromosomal proteins in polytene chromosomes of Drosophila melanogaster. EMBO J 2:395–402

    CAS  PubMed  Google Scholar 

  • Kao HY, Siliciano PG (1996) Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Mol Cell Biol 16:960–967

    CAS  PubMed  Google Scholar 

  • Kiseleva E, Wurtz T, Visa N, Daneholt B (1994) Assembly and disassembly of spliceosomes along a specific pre-messenger RNP fiber. EMBO J 13:6052–6061

    CAS  PubMed  Google Scholar 

  • Krämer A, Utans U (1991) Three protein factors (SF1, SF3 and U2AF) function in pre-splicing complex formation in addition to snRNPs. EMBO J 10:1503–1509

    PubMed  Google Scholar 

  • Krecic AM, Swanson MS (1999) hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11:363–371

    Article  CAS  PubMed  Google Scholar 

  • Lacroix JC, Azzouz R, Boucher D, Abbadie C, Pyne CK, Charlemagne J (1985) Monoclonal antibodies to lampbrush chromosome antigens of Pleurodeles waltlii. Chromosoma 92:69–80

    CAS  PubMed  Google Scholar 

  • Lei EP, Krebber H, Silver PA (2001) Messenger RNAs are recruited for nuclear export during transcription. Genes Dev 15:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Lezzi M, Meyer B, Mähr R (1981) Heat shock phenomena in Chironomus tentans I. In vivo effects of heat, overheat, and quenching on salivary chromosome puffing. Chromosoma 83:327–339

    CAS  PubMed  Google Scholar 

  • Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416:499–506

    Article  CAS  PubMed  Google Scholar 

  • Mattaj I (1993) RNA recognition: a family matter? Cell 73:837–840

    Article  CAS  PubMed  Google Scholar 

  • Matunis EL, Matunis MJ, Dreyfuss G (1993) Association of individual hnRNP proteins and snRNPs with nascent transcripts. J Cell Biol 121:219–228

    Article  CAS  PubMed  Google Scholar 

  • Morris DP, Greenleaf AL (2000) The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 275:39935–39943

    Article  CAS  PubMed  Google Scholar 

  • Morris DP, Lee JM, Sterner DE, Brickey WJ, Greenleaf AL (1997) Assaying CTD kinases in vitro and phosphorylation-modulated properties of RNA polymerase II in vivo. Methods Companion Methods Enzymol 12:264–275

    Article  CAS  Google Scholar 

  • Neubauer G, Gottschalk A, Fabrizio P, Seraphin B, Lührmann R, Mann M (1997) Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc Natl Acad Sci USA 94:385–390

    Article  Google Scholar 

  • Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuk P, Sleeman J, Lamond A, Mann M (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 20:46–50

    Article  CAS  PubMed  Google Scholar 

  • Paulsson G, Lendahl U, Galli J, Ericsson C, Wieslander L (1990) The Balbiani ring 3 gene in Chironomus tentans has a diverged repetitive structure split by many introns. J Mol Biol 211:331–349

    CAS  PubMed  Google Scholar 

  • Pelling C (1964) Ribonukleinsäure-Synthese der Riesenchromosomen. Autoradiographische Untersuchungen an Chironomus tentans. Chromosoma 15:71–122

    CAS  PubMed  Google Scholar 

  • Pinol-Roma S, Choi YD, Matunis MJ, Dreyfuss G (1988) Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev 2:215–227

    CAS  PubMed  Google Scholar 

  • Pinol-Roma S, Swanson MS, Gall JG, Dreyfuss G (1989) A novel heterogeneous nuclear RNP protein with a unique distribution on nascent transcripts. J Cell Biol 109:2575–2587

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512

    Article  CAS  PubMed  Google Scholar 

  • Roth MB, Gall JG (1987) Monoclonal antibodies that recognize transcription unit proteins on newt lampbrush chromosomes. J Cell Biol 105:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sommerville J, Crichton C, Malcolm D (1978) Immunofluorescent localization of transcriptional activity on lampbrush chromosomes. Chromosoma 66:99–114

    CAS  Google Scholar 

  • Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondon AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREEX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–307

    Article  PubMed  Google Scholar 

  • Sudol M, Chen HI, Bougeret C, Einbond A, Bork P (1995) Characterization of a novel protein-binding module—the WW domain. FEBS Lett 369:67–71

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Alzhanova-Ericsson AT, Visa N, Aissouni Y, Zhao J, Daneholt B (1998) The hrp23 protein in the Balbiani ring pre-mRNA particles is released just before or at the binding the particles to the nuclear pore complex. J Cell Biol 142:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Sune C, Garcia-Blanco MA (1999) Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 19:4719–4728

    CAS  PubMed  Google Scholar 

  • Sune C, Hayashi T, Liu Y, Lane W, Young RA, Garcia-Blanco MA (1997) CA150, a nuclear protein associated with RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol Cell Biol 17:6029–6039

    CAS  PubMed  Google Scholar 

  • Visa N, Alzhanova-Ericsson AT, Sun X, Kiseleva E, Björkroth B, Wurtz T, Daneholt B (1996) A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84:253–264

    Article  CAS  PubMed  Google Scholar 

  • Wetterberg I, Baurén G, Wieslander L (1996) The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 2:641–651

    CAS  PubMed  Google Scholar 

  • Wetterberg I, Zhao J, Masich S, Wieslander L, Skoglund U (2001) In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J 20:2564–2574

    Article  CAS  PubMed  Google Scholar 

  • Wieslander L (1994) The Balbiani ring multigene family: coding repetitive sequences and evolution of a tissue-specific cell function. Prog Nucleic Acid Res Mol Biol 48:275–313

    CAS  PubMed  Google Scholar 

  • Wurtz T, Kiseleva E, Nacheva G, Alzhanova-Ericsson AT, Rosén, A, Daneholt B (1996) Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol 16:1425–1435

    CAS  PubMed  Google Scholar 

  • Wyss C (1982) Ecdysterone, insulin and fly extract needed for the proliferation of normal Drosophila cells in defined medium. Exp Cell Res 139:297–307

    CAS  PubMed  Google Scholar 

  • Zarrinpar A, Lim WA (2000) Converging on proline: the mechanism of WW domain peptide recognition. Nat Struct Biol 7:611–613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lars Wieslander for providing us with Chironomus tentans cDNA libraries. The anti-RNA polymerase II antibody was a gift from Arno L. Greenleaf (Duke University Medical Center, Durham, N.C.). We are grateful to Sergej Masich for computer support and to Birgitta Björkroth and Lise-Marie Fjelkestam for technical assistance. This study was supported by the Swedish Research Council, Human Frontier Science Program Organization, Knut and Alice Wallenberg Foundation, Kjell and Märta Beijer Foundation, Ingabritt and Arne Lundberg Foundation and the Karolinska Institute Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil Daneholt.

Additional information

Communicated by U. Scheer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Zhao, J., Kylberg, K. et al. Conspicuous accumulation of transcription elongation repressor hrp130/CA150 on the intron-rich Balbiani ring 3 gene. Chromosoma 113, 244–257 (2004). https://doi.org/10.1007/s00412-004-0314-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0314-4

Keywords

Navigation