Skip to main content
Log in

Systematic gene targeting on the X chromosome of Drosophila melanogaster

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The genome of the model organism Drosophila melanogaster has been sequenced and annotated. Based on this groundwork, we performed a systematic genetic screen of the D. melanogaster X chromosome, which carries about one sixth of the genes of the organism. We generated a collection of single P-element insertions to provide genetic and molecular access to virtually all X-chromosomal genes. The study complements earlier work designed to systematically identify vital genes on the X chromosome by targeting transcription units which are phenotypically silent. We describe single UAS sequence-bearing P-element insertions throughout the X chromosome, which allows one to express the tagged genes under control of tissue/organ-directed GAL4 activity. In addition, the present collection of single insertion lines provides a tool to generate chromosomal deletions which are on average less than 33 kb in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams MD, et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Akieda Y, Merriam JR (2001) Genes with ectopic expression phenotypes are common, not rare. Drosoph Inf Serv 84:130–132

    Google Scholar 

  • Altschul SF, Madden TF, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Ashburner M, et al (1999) An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics 153:179–219

    CAS  PubMed  Google Scholar 

  • Bellen HJ (1999) Ten years of enhancer detection: lessons from the fly. Plant Cell 11:2271–2281

    Article  CAS  PubMed  Google Scholar 

  • Bellen HJ, O’Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ (1989) P element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev 3:1288–1300

    CAS  PubMed  Google Scholar 

  • Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, Evans-Holm M, Hiesinger PR, Schulze KL, Rubin GM, Hoskins RA, Spradling AC (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167:761–781

    Article  CAS  PubMed  Google Scholar 

  • Bender W, Spierer P, Hogness DS (1983) Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol 168:17–33

    CAS  PubMed  Google Scholar 

  • Bier E, Vaessin H, Shepherd S, Lee K, McCall K, Barbel S, Ackerman L, Carretto R, Uemura T, Grell E, Jan LY, Jan YN (1989) Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev 3:1273–1287

    CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Bridges CB (1935) Salivary chromosome maps with a key to the banding of the chromosome of Drosophila melanogaster. J Hered 26:60–64

    Google Scholar 

  • Celniker SE, et al (2002) Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol 3:RESEARCH0079.1–0079.14

    Article  Google Scholar 

  • Crisp J, Merriam J (1997) Efficiency of an F1 selection screen in a pilot two-component mutagenesis involving Drosophila melanogaster misexpression phenotypes. Drosoph Inf Serv 80:90–92

    Google Scholar 

  • FlyBase (2003) The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res 31:172–175

    Google Scholar 

  • Hild M, Beckmann B, Haas SA, Koch B, Solovyev V, Busold C, Fellenberg K, Boutros M, Vingron M, Sauer F, Hoheisel JD, Paro R (2003) An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biol 90–92:R3

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771

    CAS  PubMed  Google Scholar 

  • Kimmerly W, Stultz K, Lewis S, Lewis K, Lustre V, Romero R, Benke J, Sun D, Shirley G, Martin C, Palazzolo M (1996) A P1-based physical map of the Drosophila euchromatic genome. Genome Res 6:414–430

    CAS  PubMed  Google Scholar 

  • Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic, San Diego

    Google Scholar 

  • Miklos GL, Rubin GM (1996) The role of the genome project in determining gene function: insights from model organisms. Cell 86:521–529

    Article  CAS  PubMed  Google Scholar 

  • Parks AL, et al (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292

    Article  CAS  PubMed  Google Scholar 

  • Peter A, et al (2002) Mapping and identification of essential gene functions on the X chromosome of Drosophila. EMBO Rep 3:34–38

    Article  CAS  PubMed  Google Scholar 

  • Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470

    CAS  PubMed  Google Scholar 

  • Rørth P (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93:12418–12422

    Article  PubMed  Google Scholar 

  • Rørth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milan M, Benes V, Ansorge W, Cohen SM (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057

    PubMed  Google Scholar 

  • Rubin GM, Hong L, Brokstein P, Evans-Holm M, Frise E, Stapleton M, Harvey DA (2000a) A Drosophila complementary DNA resource. Science 287:2222–2224

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, et al (2000b) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  CAS  PubMed  Google Scholar 

  • Ryder E, et al (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:797–813

    Article  CAS  PubMed  Google Scholar 

  • Silver J (1991) Inverse polymerase chain reaction. In: McPherson MJ, Quirke P, Taylor GR (eds) PCR, a practical approach. IRL, Oxford, pp 137–146

    Google Scholar 

  • Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92:10824–10830

    CAS  PubMed  Google Scholar 

  • Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM (1999) The Berkeley Drosophila Genome Project gene disruption project: single P element insertions mutating 25% of vital Drosophila genes. Genetics 153:135–177

    CAS  PubMed  Google Scholar 

  • Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLoS Biol 1:397–409

    Article  CAS  Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six X-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Google Scholar 

  • Thibault ST, et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 3:283–287

    Article  Google Scholar 

  • Voigt A, Pflanz R, Schäfer U, Jäckle H (2002) Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev Dyn 224:403–412

    Article  CAS  PubMed  Google Scholar 

  • Wensink PC, Finnegan DJ, Donelson JE, Hogness DS (1974) A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell 3:315–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank many colleagues for their help, John Merriam and the Bloomington Drosophila Stock Center for fly strains. Supported by the German Human Genome Project (grant 01 KW 9632/9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schäfer.

Additional information

Communicated by E.A. Nigg

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beinert, N., Werner, M., Dowe, G. et al. Systematic gene targeting on the X chromosome of Drosophila melanogaster. Chromosoma 113, 271–275 (2004). https://doi.org/10.1007/s00412-004-0313-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0313-5

Keywords

Navigation