Skip to main content
Log in

A high proportion of genes involved in position effect variegation also affect chromosome inheritance

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Suppressors and enhancers of position effect variegation (PEV) have been linked to the establishment and maintenance of heterochromatin. The presence of centromeres and other inheritance elements in heterochromatic regions suggests that suppressors and enhancers of PEV, Su(var) s and E(var)s [collectively termed Mod(var)s], may be required for chromosome inheritance. In order to test this hypothesis, we screened 59 ethyl methanesulfonate-generated Drosophila Mod(var)s for dominant effects on the partially compromised inheritance of a minichromosome (J21A) missing a portion of the genetically defined centromere. Nearly half of these Mod(var)s significantly increased or decreased the transmission of J21A. Analyses of homozygous mutant larval neuroblasts suggest that these mutations affect cell cycle progression and native chromosome morphology. Five out of six complementation groups tested displayed mitotic abnormalities, including phenotypes such as telomere fusions, overcondensed chromosomes, and low mitotic index. We conclude that Mod(var)s as a group are highly enriched for genes that encode essential inheritance functions. We propose that a primary function of Mod(var)s is to promote chromosome inheritance, and that the gene silencing phenotype associated with PEV may be a secondary consequence of the heterochromatic structures required to carry out these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D

Similar content being viewed by others

References

  • Afshar K, Barton NR, Hawley RS, Goldstein LS (1995) DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell 81:129–138

    CAS  PubMed  Google Scholar 

  • Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–233

    CAS  PubMed  Google Scholar 

  • Axton JM, Dombradi V, Cohen PT, Glover DM (1990) One of the protein phosphatase 1 isoenzymes in Drosophila is essential for mitosis. Cell 63:33–46

    CAS  PubMed  Google Scholar 

  • Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542

    Article  CAS  PubMed  Google Scholar 

  • Bickel SE, Orr-Weaver TL (1996) Holding chromatids together to ensure they go their separate ways. Bioessays 18:293–300

    CAS  PubMed  Google Scholar 

  • Burke DJ (2000) Complexity in the spindle checkpoint. Curr Opin Genet Dev 10:26–31

    CAS  PubMed  Google Scholar 

  • Cenci G, Rawson RB, Belloni G, Castrillon DH, Tudor M, Petrucci R, Goldberg ML, Wasserman SA, Gatti M (1997) UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev 11:863–875

    CAS  PubMed  Google Scholar 

  • Clarke DJ, Gimenez-Abian JF (2000) Checkpoints controlling mitosis. Bioessays 22:351–363

    CAS  PubMed  Google Scholar 

  • Cook KR, Murphy TD, Nguyen TC, Karpen GH (1997) Identification of trans-acting genes necessary for centromere function in Drosophila melanogaster using centromere-defective minichromosomes. Genetics 145:737–747

    CAS  PubMed  Google Scholar 

  • Cooper JP (2000) Telomere transitions in yeast: the end of the chromosome as we know it. Curr Opin Genet Dev 10:169–177

    Google Scholar 

  • Dej KJ, Orr-Weaver TL (2000) Separation anxiety at the centromere. Trends Cell Biol 10:392–399

    CAS  PubMed  Google Scholar 

  • Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86:135–146

    CAS  Google Scholar 

  • Dobie KW, Kennedy CD, Velasco VM, McGrath TL, Weko J, Patterson RW, Karpen GH (2001) Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics 157:1623–1637

    CAS  PubMed  Google Scholar 

  • Donaldson KM, Karpen GH (1997) Trans-suppression of terminal deficiency-associated position effect variegation in a Drosophila minichromosome. Genetics 145:325–337

    CAS  PubMed  Google Scholar 

  • Donaldson KM, Lui A, Karpen GH (2002) Modifiers of terminal deficiency-associated position effect variegation in Drosophila. Genetics 160:995–1009

    CAS  PubMed  Google Scholar 

  • Dorn R, Szidonya J, Korge G, Sehnert M, Taubert H, Archoukieh E, Tschiersch B, Morawietz H, Wustmann G, Hoffmann G, et al (1993) P transposon-induced dominant enhancer mutations of position-effect variegation in Drosophila melanogaster. Genetics 133:279–290

    CAS  PubMed  Google Scholar 

  • Eissenberg JC, Morris GD, Reuter G, Hartnett T (1992) The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131:345–352

    CAS  PubMed  Google Scholar 

  • Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2:527–538

    CAS  PubMed  Google Scholar 

  • Freeman-Cook LL, Sherman JM, Brachmann CB, Allshire RC, Boeke JD, Pillus L (1999) The Schizosaccharomyces pombe hst4(+) gene is a SIR2 homologue with silencing and centromeric functions. Mol Biol Cell 10:3171–3186

    CAS  PubMed  Google Scholar 

  • Gasser SM (2001) Positions of potential: nuclear organization and gene expression. Cell 104:639–642

    CAS  PubMed  Google Scholar 

  • Gatti M, Baker BS (1989) Genes controlling essential cell-cycle functions in Drosophila melanogaster. Genes Dev 3:438–453

    CAS  PubMed  Google Scholar 

  • Gatti M, Bonaccorsi S, Pimpinelli S (1994) Looking at Drosophila mitotic chromosomes. Methods Cell Biol 44:371–379

    CAS  PubMed  Google Scholar 

  • Grewal SI, Bonaduce MJ, Klar AJ (1998) Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150:563–576

    CAS  PubMed  Google Scholar 

  • Hall IM, Noma K, Grewal SI (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci U S A 100:193–198

    Google Scholar 

  • Hari KL, Cook KR, Karpen GH (2001) The Drosophila Su(var)2–10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev 15:1334–1348

    CAS  PubMed  Google Scholar 

  • Hennig W (1999) Heterochromatin. Chromosoma 108:1–9

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Karpen GH, Le MH, Le H (1996) Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273:118–122

    CAS  PubMed  Google Scholar 

  • Kellum R, Alberts BM (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J Cell Sci 108:1419–1431

    CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  CAS  PubMed  Google Scholar 

  • Le MH, Duricka D, Karpen GH (1995) Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141:283–303

    CAS  PubMed  Google Scholar 

  • Locke J, Kotarski MA, Tartof KD (1988) Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120:181–198

    CAS  PubMed  Google Scholar 

  • McClintock B (1938) The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Missouri Agric Exp Stn Bull 290:1–48

    Google Scholar 

  • Muller HJ (1930) Types of invisible variations induced by X-rays in Drosophila. Genetics 22:299–334

    Google Scholar 

  • Murphy TD, Karpen GH (1995a) Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila minichromosome. Cell 81:139–148

    CAS  PubMed  Google Scholar 

  • Murphy TD, Karpen GH (1995b) Localization of centromere function in a Drosophila minichromosome. Cell 82:599–609

    CAS  PubMed  Google Scholar 

  • Nimmo ER, Pidoux AL, Perry PE, Allshire RC (1998) Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392:825–828

    CAS  PubMed  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M, Grewal SI, Watanabe Y (2002) Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4:89–93

    CAS  PubMed  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    CAS  PubMed  Google Scholar 

  • Reuter G, Wolff I (1981) Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet 182:516–519

    CAS  PubMed  Google Scholar 

  • Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Ruddell AA, Brock JK, Clegg NJ, Lloyd VK, Grigliatti TA (1992) A cytogenetic and genetic characterization of a group of closely linked second chromosome mutations that suppress position-effect variegation in Drosophila melanogaster. Genetics 130:333–344

    CAS  PubMed  Google Scholar 

  • Spofford JB (1976) Position-effect variegation in Drosophila. In: Ashburner M (ed) The genetics and biology of Drosophila. Academic Press, London, pp 955–1018

  • Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wahlstrom J, Karpen G (1997) Molecular structure of a functional Drosophila centromere. Cell 91:1007–1019

    CAS  PubMed  Google Scholar 

  • Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194

    Google Scholar 

  • Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3:114–120

    Article  CAS  PubMed  Google Scholar 

  • Wallrath LL (1998) Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev 8:147–153

    CAS  PubMed  Google Scholar 

  • Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9:1263–1277

    CAS  PubMed  Google Scholar 

  • Westphal T, Reuter G (2002) Recombinogenic effects of suppressors of position-effect variegation in Drosophila. Genetics 160:609–621

    CAS  PubMed  Google Scholar 

  • Wines DR, Henikoff S (1992) Somatic instability of a Drosophila chromosome. Genetics 131:683–691

    CAS  PubMed  Google Scholar 

  • Wustmann G, Szidonya J, Taubert H, Reuter G (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol Gen Genet 217:520–527

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cameron Kennedy and Beth Sullivan for technical assistance, Barbara Wakimoto, Gunther Reuter, and Joel Eissenberg for Su(var) stocks used in the initial pilot screen and M. Blower, K. Hari, K. Maggert, B. Sullivan, R. Truelove, and C. Yan for critical comments. This work contributed to partial fulfillment of the requirements for a doctorate of philosophy in Biology at the University of California San Diego for K.D. and was funded by NIH R01 GM 54549 to G.H.K., and by NIH Institutional National Research Service Award CA-09370 and an American Cancer Society Postdoctoral Fellowship to K.R.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary H. Karpen.

Additional information

Communicated by R. Allshire

H.D. Le and K.M. Donaldson contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, H.D., Donaldson, K.M., Cook, K.R. et al. A high proportion of genes involved in position effect variegation also affect chromosome inheritance. Chromosoma 112, 269–276 (2004). https://doi.org/10.1007/s00412-003-0272-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0272-2

Keywords

Navigation