Skip to main content
Log in

Nuclear bodies and compartmentalization of pre-mRNA splicing factors in higher plants

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We studied the fine structural organization of nuclear bodies in the root meristem during germination of maize and Arabidopsis thaliana using electron microscopy (EM). Cajal bodies (CBs) were observed in quiescent embryos and germinating cells in both species. The number and distribution of CBs were investigated. To characterize the nuclear splicing domains, immunofluorescence labelling with antibodies against splicing factors (U2B″ and m3G-snRNAs) and in situ hybridisation (with U1/U6 antisense probes) were performed combined with confocal microscopy. Antibodies specific to the Arabidopsis SR splicing factor atRSp31 were produced. AtRSp31 was detected in quiescent nuclei and in germinating cells. This study revealed an unexpected speckled nuclear organization of atRSp31 in root epidermal cells where micro-clusters of interchromatin granules were also observed by EM. Therefore, we examined the distribution of green fluorescent protein (GFP)-tagged atRSp31 in living cells after Agrobacterium -mediated transient expression. When expressed transiently, atRSp31-GFP exhibited a speckled distribution in leaf cells. Treatments with α-amanitin, okadaic acid, staurosporine or heat shock induced the speckles to reorganize. Furthermore, we generated stable Arabidopsis transgenics expressing atRSp31-GFP. The distribution of the fusion protein was identical to that of endogenous atRSp31. Three-dimensional time-lapse confocal microscopy showed that speckles were highly dynamic domains over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A–D
Fig. 2 A
Fig. 3
Fig. 4A–C
Fig. 5 A–E
Fig. 6

Similar content being viewed by others

References

  • Acevedo R, Samaniego R, Moreno Diaz de la Espina S (2002) Coiled bodies in nuclei from plant cells evolving from dormancy to proliferation. Chromosoma 110:559–569

    CAS  PubMed  Google Scholar 

  • Allemand E, Gattoni R, Bourbon H-M, Stevenin J, Caceres JF, Soret J, Tazi J (2001) Distinctive features of Drosophila alternative splicing factor RS domain: implication for specific phosphorylation, shuttling, and splicing activation. Mol Cell Biol 21:1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Batoko H, Zheng H-Q, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2218

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    CAS  PubMed  Google Scholar 

  • Beven AF, Simpson GG, Brown JW, Shaw PJ (1995) The organization of spliceosomal components in the nuclei of higher plants. J Cell Sci 108:509–518

    CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    CAS  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1998) Coiled body numbers in the Arabidopsis root epidermis are regulated by cell type, developmental stage and cell cycle parameters. J Cell Sci 111:3687–3694

    CAS  PubMed  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10:2297–2307

    CAS  PubMed  Google Scholar 

  • Burke B, Griffiths G, Reggio H, Louvard D, Warren G (1982) A monoclonal antibody against a 135-K Golgi membrane protein. EMBO J 1:1621–1628

    CAS  PubMed  Google Scholar 

  • Chytilova E, Macas J, Sliwinska E, Rafelski SM, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    CAS  PubMed  Google Scholar 

  • Cui P, Moreno Diaz De La Espina S (2003) Sm and U2B″ proteins redistribute to different nuclear domains in dormant and proliferating onion cells. Planta 217:21–31

    CAS  PubMed  Google Scholar 

  • Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T (2002) Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756

    Article  CAS  PubMed  Google Scholar 

  • Deltour R (1985) Nuclear activation during early germination of the higher plant embryo. J Cell Sci 75:43–83

    CAS  PubMed  Google Scholar 

  • Deltour R, Mosen H, Bronchart R (1986) Three-dimensional electron microscopy of the internal nucleolus-associated chromatin and of the nucleolar vacuoles during early germination of Sinapis alba. J Cell Sci 82:53–71

    CAS  PubMed  Google Scholar 

  • Dundr M, Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356:297–310

    Article  CAS  PubMed  Google Scholar 

  • Eils R, Gerlich D, Tvarusko W, Spector DL, Misteli T (2000) Quantitative imaging of pre-mRNA splicing factors in living cells. Mol Biol Cell 11:413–418

    CAS  PubMed  Google Scholar 

  • Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300

    CAS  PubMed  Google Scholar 

  • Gall JG (2001) A role for Cajal bodies in assembly of the nuclear transcription machinery. FEBS Lett 498:164–167

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6:1197–1211

    CAS  PubMed  Google Scholar 

  • Hebert MD, Shpargel KB, Ospina JK, Tucker KE, Matera AG (2002) Coilin methylation regulates nuclear body formation. Dev Cell 3:329–337

    CAS  PubMed  Google Scholar 

  • Huang S, Deerinck T, Ellisman M, Spector D (1994) In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J Cell Biol 126:877–899

    CAS  PubMed  Google Scholar 

  • Jady BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T (2003) Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J 22:1878–1888

    Article  CAS  PubMed  Google Scholar 

  • Jennane A, Thiry M, Goessens G (1999) Identification of coiled body-like structures in meristematic cells of Pisum sativum cotyledonary buds. Chromosoma 108:132–142

    Article  CAS  PubMed  Google Scholar 

  • Kevei E, Nagy F (2003) Phytochrome controlled signalling cascades in higher plants. Physiol Plant 117:305–313

    Article  CAS  PubMed  Google Scholar 

  • Kircher S, Gil P, Kozma-Bognar L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adam E, Schafer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–1555

    Google Scholar 

  • Kramer A (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 65:367–409

    CAS  PubMed  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280:547–553

    CAS  PubMed  Google Scholar 

  • Lewis JD, Tollervey D (2000) Like attracts like: getting RNA processing together in the nucleus. Science 288:1385–1389

    Article  CAS  PubMed  Google Scholar 

  • Lopato S, Waigmann E, Barta A (1996) Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis. Plant Cell 8:2255–2264

    Article  CAS  PubMed  Google Scholar 

  • Lopato S, Gattoni R, Fabini G, Stevenin J, Barta A (1999a) A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities. Plant Mol Biol 39:761–773

    Article  CAS  PubMed  Google Scholar 

  • Lopato S, Kalyna M, Dorner S, Kobayashi R, Krainer AR, Barta A (1999b) atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev 13:987–1001

    CAS  PubMed  Google Scholar 

  • Lopato S, Forstner C, Kalyna M, Hilscher J, Langhammer U, Indrapichate K, Lorkovic ZJ, Barta A (2002) Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. J Biol Chem 277:39989–39998

    Article  CAS  PubMed  Google Scholar 

  • Lorkovic ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    Article  CAS  PubMed  Google Scholar 

  • Mas P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–211

    CAS  PubMed  Google Scholar 

  • Matera AG (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9:302–309

    CAS  PubMed  Google Scholar 

  • Misteli T (2000) Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci 113:1841–1849

    CAS  PubMed  Google Scholar 

  • Ogg SC, Lamond AI (2002) Cajal bodies and coilin — moving towards function. J Cell Biol 159:17–21

    Article  CAS  PubMed  Google Scholar 

  • Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 4:502–508

    Article  CAS  PubMed  Google Scholar 

  • Savaldi-Goldstein S, Aviv D, Davydov O, Fluhr R (2003) Alternative splicing modulation by a Lammer kinase impinges on developmental and transcriptome expression. Plant Cell 15:926–938

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ (1996) Nuclear organization in plants. Essays Biochem 31:77–89

    CAS  PubMed  Google Scholar 

  • Sleeman JE, Ajuh P, Lamond AI (2001) snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci 114:4407–4419

    CAS  PubMed  Google Scholar 

  • Straatman KR, Schel JH (2001) Distribution of splicing proteins and putative coiled bodies during pollen development and androgenesis in Brassica napus L. Protoplasma 216:191–200

    CAS  PubMed  Google Scholar 

  • Testillano PS, Sanchez-Pina MA, Olmedilla A, Fuchs JP, Risueno MC (1993) Characterization of the interchromatin region as the nuclear domain containing snRNPs in plant cells. A cytochemical and immunoelectron microscopy study. Eur J Cell Biol 61:349–361

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr P. Gérard (Université de Liège; Unité de Recherche de Statistique — Aspects Expérimentaux) for assistance with statistical analysis, Prof. Marc Boutry (Université Catholique de Louvain, Belgium) for valuable advice with transient transformation and to Prof. Peter Shaw (John Innes Centre, Norwich, UK) for helpful comments. This research was supported by grants from “National Fund for Scientific Research” (grants no. 2.4547.99, 2.4520.02 and 2.4542.00) and from “Fonds Spéciaux du Conseil de la Recherche” of the University of Liège. S.D. was supported by an FRIA grant (Fonds de la Recherche pour l’Industrie et l’Agriculture) and V.T. is supported by FRIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Motte.

Additional information

Communicated by P. Shaw

S. Docquier and P. Motte contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Docquier, S., Tillemans, V., Deltour, R. et al. Nuclear bodies and compartmentalization of pre-mRNA splicing factors in higher plants. Chromosoma 112, 255–266 (2004). https://doi.org/10.1007/s00412-003-0271-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0271-3

Keywords

Navigation