Skip to main content
Log in

Radiation exposure from radionuclides in ground water: an uncertainty analysis for selected exposure scenarios

  • Original paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The uncertainty of the potential radiation exposure of the general population has been estimated for a normalized contamination of ground water that is being used as drinking water for humans and animals, for irrigation of food and feed crops, and for fish production in freshwater bodies. The frequency distributions of annual effective dose equivalents were calculated assuming a normalized activity concentration in water of 1 Bq/l for each radionuclide considered. Estimated frequency distributions of the parameters were used as model input. This estimation is based on an exposure scenario which reflects the present radioecological conditions. Another important source for the uncertainty of the potential dose due to radionuclides released to the ground water is the uncertainty of the exposure scenario. Since such a contamination may not occur before some time in the far future, it is impossible to predict the exact boundary conditions. Therefore, scenarios were simulated with modified consumption habits, more extensive farm management and different climatic conditions. The distributions of the potential doses cover in general about a factor of 10–20. The intake of drinking water, the root uptake and the contamination of fish are most important for the resulting potential radiation exposure. For nearly all radionuclides, the intake of drinking water dominates the potential exposure. In most cases radioactive daughter nuclides are of minor importance. In general, the influence of the exposure scenario on the dose is relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller H, Pröhl G (1993) ECOSYS-87: a dynamic model for assessing the radiological consequences of nuclear accidents. Health Phys 64:232–252

    Google Scholar 

  2. Pröhl G, Müller H (1994) The variability of the potential radiation exposure to man arising from radionuclides released to the ground water. (GSF-Report 25/94) GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg

    Google Scholar 

  3. Gardner RH, Rojder B, Bergstrom U (1983) PRISM — a systematic method for determining the effect of parameter uncertainties on model predictions. (Tech. NW-83/555) Studsvik Energitek, Nyköping, Sweden

    Google Scholar 

  4. Statistisches Bundesamt (1988) Statistisches Jahrbuch für die Bundesrepublik Deutschland 1988. Verlag W. Kohlhammer, Wiesbaden (Germany)

    Google Scholar 

  5. Renger M, Strebel O (1980) Beregnungsbedarf landwirtschaftlicher Kulturen in Abhängigkeit vom Boden. Wasser Boden 12:572–575 (Germany)

    Google Scholar 

  6. Ruhr-Stickstoff (1985) Faustzahlen für Landwirtschaft und Gartenbau. Landwirtschaftsverlag. Münster-Hiltrup (Germany)

    Google Scholar 

  7. Pröhl G (1990) Modellierung der Radionuklidausbreitung in Nahrungsketten nach Deposition von 90Sr, 137Cs und 131I auf landwirtschaftlich genutzte Flächen. (GSF-Report 29/90) GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg (Germany)

    Google Scholar 

  8. Pröhl G, Hoffman FO (1996) Modelling of radionuclide interception and loss processes in vegetation and of transfer in seminatural ecosystems. (IAEA-TECDOC-857) International Atomic Energy Agency Vienna

    Google Scholar 

  9. Hoffman FO, Thiessen KM, Frank ML, Blaylock BG (1992) Quantification of the interception and initial retention of radioactive contaminants deposited on pasture grass by simulated rain. Atmospheric Environ 26A:3313–3321

    Google Scholar 

  10. Aarkrog A, Lippert J (1971) Direct contamination of barley with 51Cr. 59Fe. 58Co, 65Zn, 203Hg, and 210Pb. Radiat Bot 11:463–472

    Article  Google Scholar 

  11. Aarkrog A (1972) Direct contamination of barley with 7Be, 22Na, 115Cd, 125Sb, 134Cs, and 133Ba. (Risø-R-256) Risø National Laboratory. Risø, Denmark, pp 163–175

    Google Scholar 

  12. Aarkrog A (1975) Radionuclide levels in mature grain related to radiostrontium content and time of direct contamination. Health Phys 28:557–562

    Google Scholar 

  13. Aarkrog A (1982) Translocation of radionuclides in cereal crops. Ecological aspects of radionuclide release. (Special publication series of the British Ecolocigal Society 3) Blackwell Scientific Publications, Oxford, pp 81–90

    Google Scholar 

  14. Coughtrey P, Jackson D, Thorne MC (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems. Balkema, Rotterdam

    Google Scholar 

  15. Strasburger E (1978) Lehrbuch der Botanik. Gustav Fischer. Stuttgart (Germany)

    Google Scholar 

  16. IAEA (1994) Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. (Technical Report 364) International Atomic Energy Agency, Vienna

    Google Scholar 

  17. Frissel M, Koster J (1987) Transfer of radionuclides — expected values and uncertainties — a summary of available data. In: International Union of Radioecologists (ed) Workshop on soil-toplant transfer factors IUR, Egham

    Google Scholar 

  18. Frissel M (1992) An update of the recommended soil-to-planttransfer factors for 90Sr, 137Cs and transuranes. In: International Union of Radioecologists (ed) Workshop on soil-to-plant transfer factors. IUR. Madrid

    Google Scholar 

  19. Deitermann WI, Hauschild J, Robens-Palavinskas R, Aumann DC (1989) Soil-to-vegetation transfer of natural 127I and of 129I from global fallout, as revealed by field measurements on permanent pastures. J Environ Radioact 10:79–88

    Article  Google Scholar 

  20. Robens-Palavinskas E, Hauschild J, Aumann DC (1989) 129I in the environment of a nuclear fuel reprocessing plant. VI. Comparison of measurements of 129I concentrations in soil and vegetation with predictions from a radiological assessment model. J Environ Radioact 10:67–78

    Article  Google Scholar 

  21. Tracy BL, Prantl FA, Quinn JM (1983) Transfer of 226Ra. 210Pb and uranium from soil to garden produce: assessment of risk. Health Phys 44:469–477

    Google Scholar 

  22. Bunzl K, Kracke W (1984) Distribution of 210Pb, 210Po, stable lead and fallout 137Cs in soil, plants, and moorland sheep of a heath. Sci Total Environ 39:143–159

    Article  Google Scholar 

  23. Kühn W, Knopke J (1987) Bestimmung von Transferfaktoren von Uran beim Übergang vom Boden zur Pflanze in ausgewählten Gebieten der Bundesrepublik Deutschland. (NIR-Report 6/86). Niedersächsisches Institut für Radioökologie. Hannover (Germany)

    Google Scholar 

  24. Clulow FV, Dave NK, Lim TP, Cloutier NR (1988) Uptake of 226Ra by established vegetation and black cutworm larvae on U mill taillings at Elliot Lake, Canada. Health Phys 55:31–35

    Google Scholar 

  25. Linsalata P, Morse R, Ford H, Eisenbud M, Penna Franca E, Castro M de, Loboa N, Sachett I, Carlos M (1989) Transport pathways of Th. U, Ra, and La from soil to cattle. J Environ Radioact 10:115–140

    Article  Google Scholar 

  26. Schupfner R, Schüttelkopf H, Müller A (1991) Bodenkonzentrationen und Boden-Pflanze-Transferfaktoren natürlicher Radionuklide aus der Thorium-Zerfallsreihe in einem Gebiet mit hohem Thoriumgehalt des Bodens. In: Jacobs H, Bonka H. (eds) Proc Jahrestagung Fachverband für Strahlenschutz, Aachen (Germany)

  27. Baes CF III, Sharp RD, Sjoreen AL, Shor RW (1984) A review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture. (ORNL-5786) Oak Ridge National Laboratory, Oak Ridge. Tenn.

    Google Scholar 

  28. Ng YC, Colsher CS, Thompson SE (1982) Transfer coefficients for assessing the dose from radionuclides in meat and eggs. (Rep NUREG/CR-2976) Lawrence Livermore Laboratory, Livermore

    Google Scholar 

  29. Bachhuber H, Bunzl K, Dietl F, Schimmack W, Schulz W (1984) Sorption und Ausbreitung von Radionukliden in zwei Ackerböden der Bundesrepublik Deutschland. (GSF-Report S-1071) GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg (Germany)

    Google Scholar 

  30. Behrens H (1985) Speciation of iodine in aquatic and terrestrial systems under influence of biogeochemical processes. In: Bulman R. Cooper J (eds) Proc CEC-Seminar on ‘Speciation of fission and activation products in the environment’, Oxford pp 223–230

  31. Kocher DC, Killough GG (1986) Global cycling of tritium and 129I. In: CEC (ed) Proc Seminar on ‘Cycling of long-lived radionuclides in the biosphere: observations and models’. CEC. Madrid

    Google Scholar 

  32. Bunzl K, Schimmack W (1988) Effect of microbial biomass reduction by ψ-irradiation on the sorption of 137Cs, 85Sr, 139Ce, 57Co, 109Cd, 65Zn, 103Ru, 95mTc, and 131I by soils, Radiat Environ Biophys 27:165–176

    Article  Google Scholar 

  33. Sheppard SC, Thibault DH (1990) Default soil solid/liquid partition coefficients for 4 major soil types: a compendium. Health Phys 59:471–482

    Google Scholar 

  34. Sheppard SC, Evenden WG (1988) The assumption of linearity in soil and plant concentration ratios: an experimental evaluation. J Environ Radioact 7:221–247

    Article  Google Scholar 

  35. Garland JA, Pattenden NJ, Playford K (1992) Resuspension following Chernobyl. In: Modelling of resuspension, seasonality and losses during food processing. (IAEA-TECDOC-647) International Atomic Energy Agency, Vienna

    Google Scholar 

  36. Davidson CI, Wu YL (1989) Dry deposition of trace elements. In: Pacyna JF, Ottar B (eds) Control and fate of atmospheric trace metals. Kluwer Academic Publishers. Dordrecht

    Google Scholar 

  37. Kirchgessner M (1987) Tierernährung. DLG-Verlag, Frankfurt/Main (Germany)

    Google Scholar 

  38. Ng YC, Colsher CS, Quinn DJ, Thompson SE (1977) Transfer coefficients for the prediction of the dose to man via the forage-cowmilk pathway from radionuclides released to the biosphere. (Rep. UCRL-51939) Lawrence Livermore Laboratory, Livermore

    Google Scholar 

  39. Bundesanstalt für Milchforschung. Institut für Chemie und Physik (ed) (1983) Untersuchungen zum Transfer von Strontium-, Cäsium- und relevanten Schwermetallradionukliden unter den radioökologischen Bedingungen der Umgebung von Gorleben. Report Bundesanstalt für Milchforschung, Kiel (Germany)

  40. Wagner H, Mirna A (1984) Ermittlung von Transferfaktoren beim Übergang von 137Cs, 90Sr, und 210Pb aus dem Futter in das Fleisch von Schlachttieren. Bundesanstalt für Fleischforschung Kulmbach (Germany)

    Google Scholar 

  41. Sumerling TJ, Green N, Dodd NJ (1984) Uptake of radionuclides by farm animals close to a major nuclear installation. In: Kaul A, Neider R, Pensko J, Stieve F-E, Brunner H (eds) Radiationrisk — protection. Verlag TÜV Rheinland, pp 157–160

    Google Scholar 

  42. Voigt G, Henrichs K, Pröhl G, Paretzke HG (1987) Experimentelle Bestimmung von Transferfunktionen Futter/Rindfleisch, Futter/Schweinefleisch und Futter/Milch für 137Cs, 60Co, 54Mn, 22Na, 131I, und 99mTc. GSF-Report 2/87) GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg (Germany)

    Google Scholar 

  43. Assimakopoulos P, Ioannides KG, Pakon AA, Mantzios A (1988) Measurement of the transfer coefficient for radiocaesium transport from a sheep’s diet to its milk. Health Phys 53:685–689

    Google Scholar 

  44. Ennis ME, Ward GM, Johnson JE, Boamah KN (1988) Transfer coefficients of selected radionuclides to animal products. II. Hen eggs and meat. Health Phys 54:161–165

    Google Scholar 

  45. Johnson JE, Ward GM, Ennis ME, Booamah KN (1988) Transfer factors of radionuclides to animal products. I. Comparison of meat and milk from dairy cows and goats. Health Phys 54:161–166

    Article  Google Scholar 

  46. Thompson SE, Burton CA, Quinn DJ, Ng YC (1972) Concentration factors of chemical elements in edible aquatic organisms. Report UCRL-50564. Lawrence Livermore Laboratory, Livermore

    Google Scholar 

  47. Poston TM, Klopfer DC (1988) Concentration factors used in the assessment of radiation dose to consumers of fish: a review of 27 radionuclides, Health Phys 55:751–766

    Google Scholar 

  48. SNIRP (1988) Scenario B3 — release of 226Ra, and 230Th to a lake. (BIOMOVS — Technical report) Swedish National Institute for Radiation Protection, Stockholm

    Google Scholar 

  49. Bundesminister für Umwelt. Naturschutz und Reaktorsicherheit (BMU) (1987) Radionuklide in Wasser-Schwebstoff-Systemen und Abschätzung der Strahlenexposition. Gustav Fischer Verlag, Stuttgart (Germany)

    Google Scholar 

  50. Deutsche Gesellschaft für Ernährung (DGE) (1988) Ernährungsbericht 1988. DGE, Franfurt/Main (Germany)

    Google Scholar 

  51. Projektträgerschaft Forschung im Dienste der Gesundheit in der Deutschen Forschungsanstalt für Luft-und Raumfahrt (ed) (1991) Die Nationale Verzehrsstudie. (Materialien zur Gesundheitsforschung 18)

  52. Henrichs K, Elsasser U, Schotola C, Kaul A (1985) Dosisfaktoren für Inhalation und Ingestion von Radionuklidverbindungen (Altersklasse I Jahr). (ISH-Report 78) Bundesgesundheitsamt, Institut für Strahlenhygiene, Neuherberg (Germany)

    Google Scholar 

  53. Noßke D, Gerich B, Langner S (1985) Dosisfaktoren für Inhalation und Ingestion von Radionuklidverbindungen (Erwachsene). (ISH-Report 63) Bundesgesundheitsamt, Institut für Strahlenhygiene, Neuherberg (Germany)

    Google Scholar 

  54. ICRP 30 (1979) Limits for intakes of radionuclides by workers International Commission on Radiological Protection/Pergamon Press, Oxford

    Google Scholar 

  55. ICRP 48 (1986) The metabolism of plutonium and related elements. International Commission on Radiological Protection/Pergamon Press, Oxford

    Google Scholar 

  56. Blum J (1982) Die bäuerliche Welt — Geschichte und Kultur in sieben Jahrhunderten, C. H. Beck, Munich (Germany)

    Google Scholar 

  57. Teuteberg HJ (1979) Der Verzehr von Nahrungsmitteln in Deutschland pro Kopf und Jahr seit Beginn der Industrialisierung (1850–1975) Archiv Sozialgeschichte 19:331–388

    Google Scholar 

  58. Loon LR van, Lembrechts JFMM (1986) Speciation of technetium in plants grown on substrates contaminated with different chemical forms of technetium. In: Desmet G, Myttenaere C (eds) Technetium in the environment. Elsevier Applied Science, London

    Google Scholar 

  59. Heyer E (1981) Witterung und Klima. Teubner Verlagsgesellschaft, Leipzig (Germany)

    Google Scholar 

  60. Klatt F (1958) Technik und Anwendung der Feidberegnung. VEB Verlag Technik, Berlin (Germany)

    Google Scholar 

  61. Schnelle F (1965) Beiträge zur Phänologie Europas I. 5 Mittelwertskarten, Erstfrühling bis Herbst. Berichte des Wetterdienstes 14:3–6 (Germany)

    Google Scholar 

  62. Scheffer F, Schachtschabel P (1979) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart (Germany)

    Google Scholar 

  63. Bogenrieder A (1982) Boden versalzung in der Bewässerungslandwirtschaft arider Zonen. Naturwiss Rundsch 35:103–109 (Germany)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pröhl, G., Müller, H. Radiation exposure from radionuclides in ground water: an uncertainty analysis for selected exposure scenarios. Radiat Environ Biophys 35, 205–218 (1996). https://doi.org/10.1007/s004110050032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004110050032

Keywords

Navigation