Skip to main content
Log in

Potential survival of the lichen Caloplaca flavovirescens under high helium-beam doses

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Testing the limits of survivability in space is the primary focus in astrobiological research. Although a number of previous studies have examined terrestrial life survival in an extraterrestrial environment, only a few have investigated how life systems respond to high doses of alpha cosmic ray, the main component of cosmic rays. We used respiration and photosynthetic rates as indicators of the vital signs of the lichen Caloplaca flavovirescens, which is a symbiotic life form including fungi and algae. Our experiment demonstrated that the photosynthetic rate decreased with increased helium-beam doses, whereas the respiration rate was relatively unaffected. Specifically, under a helium-beam dose greater than 10 Gy, the respiration rate remained nearly constant regardless of further increases in the radiation rate. Our results indicate that the different metabolic systems of terrestrial life forms might exhibit different survival characteristics when they are in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baranov VM, Novikova ND, Polikarpov NA, Sychev VN, Levinskikh MA, Alekseev VR, Okuda T, Sugimoto M, Gusev OA, Grigor AI (2009) The Biorisk experiment: 13-month exposure of resting forms of organism on the outer side of the Russia segment of the International Space Station. Dokl Biol Sci 426:267–270

    Article  Google Scholar 

  • Brandt A, Meeßen J, Jänicke RU, Raguse M, Ott S (2017) Simulated space radiation: impact of four different types of high-dose ionizing radiation on the lichen. Xanthoria elegans. Astrobiology 17:136–144

    Article  ADS  Google Scholar 

  • de la Torre Noetzel R, Sancho LG, Pintado A, Rettberg P, Rabbow E, Panitz C, Deutschmann U, Reina M, Horneck G (2007) BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. Adv Space Res 40:1665–1671

    Article  ADS  Google Scholar 

  • de la Torre Noetzel R, Miller AZ, Cubero B, Martin-Cerezo ML, Raguse M, Meeßen J (2017) The effect of high-dose ionizing radiation on the astrobiological model lichen Circinaria gyrosa. Astrobiology 17:145–153

    Article  ADS  Google Scholar 

  • de Vera JP, Onofri S (2010) ESA-space experiments: from BIOPAN6 experiment “lithopanspermia” to expose. 38th COSPAR Scientific Assembly 2010, F44 (Life Sciences as Related to Space, Influence of Space Flight Environments on Biological Systems), Bremen, and European Space Agency: ESA Portal-Live long and prosper, Xanthoria elegans, ESA news, 1 Feb 2010

  • Dohm JM, Maruyama S (2015) Habitable trinity. Geosci Front 6(1):95–101

    Article  Google Scholar 

  • Edson A, Lee S, Bannon P, Kasting JF, Pollard D (2011) Atmospheric circulations of terrestrial planets orbiting low-mass stars. Icarus 212:1–13

    Article  ADS  Google Scholar 

  • Ferl RJ, Wheeler R, Levine HG, Paul AL (2002) Planets in space. Curr Opin Plant Biol 2:258–263

    Article  Google Scholar 

  • Kawaguchi Y (2013) Assessing the viability of Deinococcus spp. under the simulated ISS environment and detection of microbes from silica aerogel for the space experiment. Dissertation, Tokyo University of Pharmacy and Life Science

  • Kawaguchi Y, Yang Y, Kawashiri N, Shiraishi S, Takasu M, Narumi I, Satoh K, Hashimoto H, Nakagawa K, Taniguchi Y (2013) The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS environmental conditions for performing exposure experiments of microbes in the Tanpopo mission. Orig Life Evol Biosph 43:411–428

    Article  ADS  Google Scholar 

  • Kirschvink JL, Weiss BP (2003) Mars, Panspermia and the origin of life: where did it all begin? J Geogr 112:187–196

    Article  Google Scholar 

  • Kopparapu RK, Wolf ET, Haqq-Misra J, Yang J, Kasting JF, Meadows V, Terrien R, Mahadevan S (2016) The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys J 819:84–98

    Article  ADS  Google Scholar 

  • Maruyama S, Ikoma M, Genda H, Hirose K, Yokoyama T, Santosh M (2013) The naked planet Earth: most essential pre-requisite for the origin and evolution of life. Geosci Front 4:141–165

    Article  Google Scholar 

  • Mautner MN (1997) Directed panspermia. 3. Strategies and motivation for seeding star-forming clouds. J Br Interplanet Soc 50:93–102

    ADS  Google Scholar 

  • Mautner MN (2010) Seeding the universe with life: securing our cosmological future. J Cosmol 5:982–994

    Google Scholar 

  • Meeßen J, Sánchez FJ, Sadowsky A, de la Torre Noetzel R, Ott S, de Vera JP (2013) Extreme tolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. Orig Life Evol Biosph 43:501–526

    Article  ADS  Google Scholar 

  • Meeßen J, Backhaus T, Brandt A (2017) The effect of high dose ionizing radiation on the isolated photobiont of the astrobiological model lichen Circinaria gyrosa. Astrobiology 17:154–162

    Article  ADS  Google Scholar 

  • Miralles I, Ferron CC, Hernandez V, Lopez-Navarrete JT, Jorge-Villar SE (2017) Lichen biomarkers upon heating: a Raman spectroscopic study with implications for extra-terrestrial exploration. Int J Astrobiol 16:74–81

    Article  Google Scholar 

  • Moeller R, Raguse M, Leuko S, Berger T, Helweg CE, Fujimori A, Okayasu R, Horneck G, the STARLIFE Research Group (2017) STARLIFE—an international campaign to study the role of galactic cosmic radiation in astrobiological model systems. Astrobiology 17:101–109

    Article  ADS  Google Scholar 

  • Moriyama A, Yonemura S, Kawashima S, Mingyuan D, Tang Y (2013) Environmental indicators for estimating the potential soil respiration rate in alpine zone. Ecol Indic 32:245–252

    Article  Google Scholar 

  • Novikova N, Gusev O, Polikarpov N, Deshevaya E, Levinskikh M, Alekseev V, Okuda T, Sugimoto M, Sychev V, Grigoriev A (2011) Survival of dormant organisms after long-term exposure to the space environment. Acta Astronaut 68:1574–1580

    Article  ADS  Google Scholar 

  • Novikova N, Deshevaya E, Levinskikh M, Polikarapov N, Poddubko S, Guusev O, Sychev V (2015) Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the ‘Expose-R’ experiment. Int J Astrobiol 14:137–142

    Article  Google Scholar 

  • Onofri S, de la Torre Noetzel R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Inigo FJS, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Article  ADS  Google Scholar 

  • Pacelli C, Selbmann L, Zucconi L, Rugose M, Moeller R, Shuyak I, Onofri S (2017) Survival, DNA integrity and ultrastructural damage in Antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation. Astrobiology 17:126–135

    Article  ADS  Google Scholar 

  • Peñate L, Martín O, Cárdenas R, Agustí S (2010) Short-term effects of gamma ray bursts on oceanic photosynthesis. Astrophys Space Sci 330:211–217

    Article  ADS  Google Scholar 

  • Rabbow E, Rettberg P, Barczyk S, Bohmeier M, Parpart A, Panitz C, Horneck G, von Heise-Rotenburg R, Hoppenbrouwers T, Willnecker R, Baglioni P, Demets R, Dettmann J, Reitz G (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386

    Article  ADS  Google Scholar 

  • Rabbow E, Rettberg P, Barczyk S, Bohmeier M (2015) The astrobiological mission EXPOSE-R on board of the International Space Station. Int J Astrobiol 14:3–16

    Article  Google Scholar 

  • Raggio J, Pintado A, Ascaso C, de la Torre Noetzel R, de los Rios A, Wierzchos J, Horneck G, Sancho LG (2011) Whole lichen thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 43:501–526

    Google Scholar 

  • Rodriguez L, Cardenas R, Rodriguez O (2013) Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model. Int J Astrobiol 12:326–330

    Article  Google Scholar 

  • Sánchez FJ, Mateo-Martí E, Raggio J, Meeßen J, Martínez-Frías J, Sancho LG, Ott S, de la Torre Noetzel R (2012) The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile. Planet Space Sci 72:102–110

    Article  ADS  Google Scholar 

  • Sancho LG, de la Torre Noetzel R, Horneck G, Ascaso C, de los Rios A, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454

    Article  ADS  Google Scholar 

  • Takahashi Y, Hashimoto H, Nakagawa N, Shibata S (2011) Survivability of moss and fungal spores in tests simulating conditions of the ISS outer wall. Biol Sci Space 25:83–92

    Article  Google Scholar 

  • Takahashi Y, Shibata S, Yokoyama J, Hashimoto H, Yokobori S, Yamagishi A (2013) Selection of lichens resistant to the cosmic environment—thermal cycle treatment, UV irradiation and heavy ion beam irradiation. Biol Sci Space 27:9–18

    Article  Google Scholar 

  • Trotman C (2004) The feathered onion, creation of life in the universe. Wiley, West Sussex

    Google Scholar 

  • Verseux C, Baqué M, Cifariello R, Fagliarone C, Raguse M, Moeller R, Billi D (2017) Evaluation of the resistance of Chroococcidiopsis spp. to sparsely and densely ionizing irradiation. Astrobiology 17:118–125

    Article  ADS  Google Scholar 

  • Yamagishi A, Yano H, Kobayashi K, Yokobori S, Yamashita M, Hashimoto H, Tabata M, Kawai H, Yamashita M, Hashimoto H, Naraoka H, Mita H (2008) Tanpopo: astrobiology exposure and micrometeorid capture experiments. Viva Origino 36:72–76

    Google Scholar 

  • Yang J, Abbot DS (2014) A low order model of water vapor, clouds, and thermal emission for tidally locked terrestrial planets. Astrophys J 784:155–168

    Article  ADS  Google Scholar 

  • Yonemura S, Nishimura S, Kawashima S (2013) Systematic formulation of equations for trace-gas uptake by soil. J Agric Meteorol 69:277–287

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Hiroki Fukuma, who arranged the experimental datasets, and Ms. Yuriko Arakawa, secretary at the Graduate School of Agriculture, Kyoto University. We would also like to thank the groups within the Tanpopo Mission for the exposure experiments (representative Prof. Akihiko Yamagishi of Tokyo Pharmaceutical University), especially Dr. Yuko Kawaguchi and Dr. Shin’ichi Yokobori for helium-beam irradiation at the National Institute of Radiological Sciences, and Dr. Hiroshi Harada of the Natural History Museum and Institute, Chiba, for the identification of lichens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kawashima.

Ethics declarations

Conflict of interest

The authors have no financial disclosures or conflicts to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miki, K., Kawashima, S., Takahashi, Y. et al. Potential survival of the lichen Caloplaca flavovirescens under high helium-beam doses. Radiat Environ Biophys 58, 449–454 (2019). https://doi.org/10.1007/s00411-019-00803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00803-3

Keywords

Navigation